pandas to_csv
时间: 2023-08-25 13:11:00 浏览: 178
Python使用Pandas对csv文件进行数据处理的方法
5星 · 资源好评率100%
可以使用pandas的to_csv()方法将DataFrame保存为csv文件。例如,使用以下代码将DataFrame保存为csv文件:
```python
import pandas as pd
df = pd.read_csv('./data/34/sample_pandas_normal.csv', index_col=0)
df.to_csv('./data/34/to_csv_out.csv')
```
这将把DataFrame保存为名为to_csv_out.csv的文件。如果你想将数据追加到现有的csv文件中,可以使用mode='a'参数。例如:
```python
df.to_csv('./data/34/to_csv_out.csv', mode='a', header=False)
```
这将把数据追加到to_csv_out.csv文件中,而不会添加新的列名。
如果你想指定整数或浮点数列的格式,可以先将DataFrame中的列转换为字符串格式,然后再保存为csv文件。例如:
```python
df\['col1'\] = df\['col1'\].map('{:.3f}'.format)
df\['col2'\] = df\['col2'\].map('{:.3e}'.format)
df\['col3'\] = df\['col3'\].map('{:#010x}'.format)
df.to_csv('./data/34/to_csv_out_float_format_str.csv')
```
这将把DataFrame中的col1列保留3位小数,col2列使用科学计数法表示,col3列以十六进制格式保存。
请注意,保存后的列类型将变为object。你可以使用df.dtypes来检查列的数据类型。
\[1\] \[2\] \[3\]
#### 引用[.reference_title]
- *1* *2* *3* [34_Pandas对CSV文件内容的导出和添加(to_csv)](https://blog.csdn.net/qq_18351157/article/details/113520345)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item]
[ .reference_list ]
阅读全文