to_string.find

时间: 2024-06-13 22:08:07 浏览: 15
很抱歉,`to_string`并没有`find`方法。`to_string`是C++中的一个函数,用于将数字转换为字符串。如果你想在字符串中查找子串,可以使用`find`方法。下面是一个例子: ```cpp #include <iostream> #include <string> using namespace std; int main() { string str = "hello world"; int pos = str.find("world"); if (pos != string::npos) { cout << "Found at position " << pos << endl; } else { cout << "Not found" << endl; } return 0; } ``` 这个例子中,我们定义了一个字符串`str`,然后使用`find`方法查找子串"world"。如果找到了,就输出它在字符串中的位置;否则输出"Not found"。需要注意的是,如果`find`方法没有找到子串,它会返回一个特殊的值`string::npos`,表示没有找到。
相关问题

string it_string = it->path().c_str(); unsigned int pos = it_string.find(from.filename().c_str()); string to_string = it_string.substr (pos);

这段代码的功能是在文件路径字符串`it_string`中寻找另一个文件路径`from`的文件名,并将该文件名所在位置之后的字符串截取出来,存储到`to_string`中。 具体来说,`it->path().c_str()`将返回一个表示文件路径的C风格字符串,该字符串存储在std::string类型的变量`it_string`中。然后,`from.filename().c_str()`将返回另一个文件路径`from`的文件名,并将其转换为C风格字符串。接着,`it_string.find(from.filename().c_str())`将在`it_string`中查找该文件名,并返回该文件名在`it_string`中的位置。 最后,`it_string.substr(pos)`将截取`it_string`字符串中从`pos`位置开始到字符串结尾的部分,并将其存储到std::string类型的变量`to_string`中。 例如,假设我们有一个文件路径字符串`it_string`为"/home/user/documents/myfile.txt",另一个文件路径`from`为"/home/user/pictures/image.jpg",那么以下代码将截取出`it_string`中"documents/myfile.txt"部分并存储到`to_string`中: ``` #include <iostream> #include <filesystem> int main() { std::filesystem::path filePath("/home/user/documents/myfile.txt"); std::filesystem::path fromPath("/home/user/pictures/image.jpg"); std::string it_string = filePath.c_str(); unsigned int pos = it_string.find(fromPath.filename().c_str()); std::string to_string = it_string.substr(pos); std::cout << to_string << std::endl; return 0; } ``` 输出将为:"documents/myfile.txt"。

string.find_last_of

As an AI language model, I don't know which programming language you are referring to. However, I can explain the general concept of the "find_last_of" function. In many programming languages, "find_last_of" is a string function that returns the index of the last occurrence of a character or substring in a string. It searches the string from the end towards the beginning until it finds the specified character or substring. If the character or substring is not found, it returns a special value such as -1. For example, in Python, the "find_last_of" function is called "rfind". Here is an example of how to use it: ``` string = "hello world" index = string.rfind("o") print(index) # prints 7 ``` In this example, the "rfind" function returns the index of the last occurrence of the letter "o" in the string "hello world", which is 7.

相关推荐

geodetic_to_gauss_trans(double lon, double lat, int zone_mode, double custom_longitude) { if ((lon >= -180 && lon <= 180) && (lat >= -90 && lat <= 90) && (zone_mode == -1 || zone_mode == 0 || zone_mode == 1) && (custom_longitude >= -180 && custom_longitude <= 180)) { switch (zone_mode) { case 1: if (lon >= 1.5) { zone_ = int((lon + 1.5) / 3); central_meridian_ = zone_ * 3; } if (lon < 1.5) { zone_ = int((lon + 1.5) / 3) + 120; central_meridian_ = zone_ * 3 - 360; } break; case -1: if (lon >= 0) { zone_ = int(lon / 6) + 1; central_meridian_ = zone_ * 6 - 3; } if (lon < 0) { zone_ = int(lon / 6) + 60; central_meridian_ = (zone_ * 6 - 3) - 360; } break; case 0: central_meridian_ = custom_longitude; break; } } else { x_ = 0; y_ = 0; return false; } std::string proj_string = "+proj=tmerc +lat_0=0 +lon_0=central_meridian +k=1 +x_0=500000 +y_0=0 +ellps=GRS80 +units=m +no_defs +type=crs"; std::string to_replace = "central_meridian"; std::string replace_with = std::to_string(central_meridian_); size_t pos = proj_string.find(to_replace); proj_string.replace(pos, to_replace.length(), replace_with); PJ_CONTEXT *C = proj_context_create(); PJ *P = proj_create(C, proj_string.c_str()); PJ *G = proj_crs_get_geodetic_crs(C, P); PJ_AREA *A = nullptr; const char *const *options = nullptr; PJ *G2P = proj_create_crs_to_crs_from_pj(C, G, P, A, options); PJ_COORD c_in{}; c_in.lpzt.z = 0.0; c_in.lpzt.t = HUGE_VAL; c_in.lp.lam = lon; c_in.lp.phi = lat; PJ_COORD c_out = proj_trans(G2P, PJ_FWD, c_in); x_ = c_out.enu.n; y_ = c_out.enu.e; // PJ_COORD c_inv = proj_trans(G2P, PJ_DIRECTION::PJ_INV, c_out); std::cout.precision(20); std::cout << std::fixed; std::cout << x_ << "," << y_ << std::endl; std::cout << std::fixed << c_inv.lp.lam << "," << c_inv.lp.phi << std::endl; proj_destroy(P); proj_destroy(G); proj_destroy(G2P); proj_context_destroy(C); return true; }

/usr/bin/ld: CMakeFiles/global_planning_node.dir/src/global_planning_node.cpp.o: in function main.cold': global_planning_node.cpp:(.text.unlikely+0x273): undefined reference to tf::TransformListener::~TransformListener()' /usr/bin/ld: CMakeFiles/global_planning_node.dir/src/global_planning_node.cpp.o: in function main': global_planning_node.cpp:(.text.startup+0xc64): undefined reference to tf::Transformer::DEFAULT_CACHE_TIME' /usr/bin/ld: global_planning_node.cpp:(.text.startup+0xc92): undefined reference to tf::TransformListener::TransformListener(ros::Duration, bool)' /usr/bin/ld: global_planning_node.cpp:(.text.startup+0xd7a): undefined reference to tf::Transformer::lookupTransform(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::_cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, ros::Time const&, tf::StampedTransform&) const' /usr/bin/ld: global_planning_node.cpp:(.text.startup+0xe74): undefined reference to tf::TransformListener::~TransformListener()' collect2: error: ld returned 1 exit status make[2]: *** [CMakeFiles/global_planning_node.dir/build.make:246: /home/juan/catkin_ws/devel/.private/putn/lib/putn/global_planning_node] Error 1 make[1]: *** [CMakeFiles/Makefile2:207: CMakeFiles/global_planning_node.dir/all] Error 2 make[1]: *** Waiting for unfinished jobs.... /usr/bin/ld: CMakeFiles/local_obs_node.dir/src/local_obs.cpp.o: in function rcvVelodyneCallBack(sensor_msgs::PointCloud2<std::allocator<void> > const&)': local_obs.cpp:(.text+0xa0b): undefined reference to tf::Transformer::waitForTransform(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, ros::Time const&, ros::Duration const&, ros::Duration const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >*) const' /usr/bin/ld: local_obs.cpp:(.text+0xc74): undefined reference to tf::TransformListener::transformPoint(std::cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, geometry_msgs::PointStamped<std::allocator<void> > const&, geometry_msgs::PointStamped<std::allocator<void> >&) const' /usr/bin/ld: CMakeFiles/local_obs_node.dir/src/local_obs.cpp.o: in function main.cold': local_obs.cpp:(.text.unlikely+0x37d): undefined reference to tf::TransformListener::~TransformListener()' /usr/bin/ld: CMakeFiles/local_obs_node.dir/src/local_obs.cpp.o: in function main':local_obs.cpp:(.text.startup+0x62a): undefined reference to tf::Transformer::DEFAULT_CACHE_TIME' /usr/bin/ld: local_obs.cpp:(.text.startup+0x64d): undefined reference to tf::TransformListener::TransformListener(ros::Duration, bool)' /usr/bin/ld: local_obs.cpp:(.text.startup+0x6dc): undefined reference to tf::TransformListener::~TransformListener()' collect2: error: ld returned 1 exit status make[2]: *** [CMakeFiles/local_obs_node.dir/build.make:246: /home/juan/catkin_ws/devel/.private/putn/lib/putn/local_obs_node] Error 1 make[1]: *** [CMakeFiles/Makefile2:612: CMakeFiles/local_obs_node.dir/all] Error 2 make: *** [Makefile:141: all] Error 2解释编译时出现这个问题的原因,并说说如何解决

UnauthorizedError Traceback (most recent call last) Cell In[162], line 11 9 # 获取上个月的天气情况 10 mgr = owm.weather_manager() ---> 11 observation = mgr.weather_at_place('上海') # 这里以北京为例 12 date_obj = datetime.datetime(last_month.year, last_month.month, 1) 13 one_call = mgr.one_call(lat=observation.weather.location.lat, lon=observation.weather.location.lon, dt=date_obj.timestamp(), exclude='current,minutely,hourly,alerts') File ~/opt/anaconda3/lib/python3.9/site-packages/pyowm/weatherapi25/weather_manager.py:53, in WeatherManager.weather_at_place(self, name) 51 assert isinstance(name, str), "Value must be a string" 52 params = {'q': name} ---> 53 _, json_data = self.http_client.get_json(OBSERVATION_URI, params=params) 54 return observation.Observation.from_dict(json_data) File ~/opt/anaconda3/lib/python3.9/site-packages/pyowm/commons/http_client.py:158, in HttpClient.get_json(self, path, params, headers) 156 except requests.exceptions.Timeout: 157 raise exceptions.TimeoutError('API call timeouted') --> 158 HttpClient.check_status_code(resp.status_code, resp.text) 159 try: 160 return resp.status_code, resp.json() File ~/opt/anaconda3/lib/python3.9/site-packages/pyowm/commons/http_client.py:313, in HttpClient.check_status_code(cls, status_code, payload) 311 raise exceptions.APIRequestError(payload) 312 elif status_code == 401: --> 313 raise exceptions.UnauthorizedError('Invalid API Key provided') 314 elif status_code == 404: 315 raise exceptions.NotFoundError('Unable to find the resource')解释下是什么原因的报错

编译报错如下:CMakeFiles/t3_node.dir/src/main.cpp.o: In function boost::asio::ssl::detail::openssl_init_base::do_init::~do_init()': main.cpp:(.text._ZN5boost4asio3ssl6detail17openssl_init_base7do_initD2Ev[_ZN5boost4asio3ssl6detail17openssl_init_base7do_initD5Ev]+0x12): undefined reference to CONF_modules_unload' CMakeFiles/t3_node.dir/src/main.cpp.o: In function boost::asio::error::detail::ssl_category::message[abi:cxx11](int) const': main.cpp:(.text._ZNK5boost4asio5error6detail12ssl_category7messageB5cxx11Ei[_ZNK5boost4asio5error6detail12ssl_category7messageB5cxx11Ei]+0x2c): undefined reference to ERR_reason_error_string' main.cpp:(.text._ZNK5boost4asio5error6detail12ssl_category7messageB5cxx11Ei[_ZNK5boost4asio5error6detail12ssl_category7messageB5cxx11Ei]+0x48): undefined reference to ERR_lib_error_string' main.cpp:(.text._ZNK5boost4asio5error6detail12ssl_category7messageB5cxx11Ei[_ZNK5boost4asio5error6detail12ssl_category7messageB5cxx11Ei]+0x59): undefined reference to ERR_func_error_string' collect2: error: ld returned 1 exit status t3/CMakeFiles/t3_node.dir/build.make:318: recipe for target '/smartview/devel/lib/t3/t3_node' failed make[2]: *** [/smartview/devel/lib/t3/t3_node] Error 1 CMakeFiles/Makefile2:3555: recipe for target 't3/CMakeFiles/t3_node.dir/all' failed make[1]: *** [t3/CMakeFiles/t3_node.dir/all] Error 2 make[1]: *** Waiting for unfinished jobs.... [ 96%] Built target play_node [100%] Built target smartview_handler Makefile:145: recipe for target 'all' failed make: *** [all] Error 2 Invoking "make -j20 -l20" failed

给下面代码每一行给上注释并说明这段代码的意思#include "pch.h" #include "FinBudgetSupport.h" #include <map> time_t StringToDateTime(char* str) { tm tm_; int year, month, day, hour, min, sec; afxDump << str << "\n\n\n\n"; sscanf_s(str, "%d-%d-%d %d:%d:%d", &year, &month, &day, &hour, &min, &sec); tm_.tm_year = year - 1900; tm_.tm_mon = month - 1; tm_.tm_mday = day; tm_.tm_hour = hour; tm_.tm_min = min; tm_.tm_sec = sec; tm_.tm_isdst = -1; time_t t_ = mktime(&tm_); return t_; } CString DateTimeToString(time_t _time) { tm *_tm = new tm(); gmtime_s(_tm ,&_time); CString t_str; t_str.Format(_T("%d-%d-%d %d:%d:%d"), _tm->tm_year+1900, 1+_tm->tm_mon, _tm->tm_mday, _tm->tm_hour , _tm->tm_min, _tm->tm_sec); delete _tm; return t_str; } CString _toCString(double _value) { CString t_str; t_str.Format(_T("%lf"), _value); return t_str; } CString _toCString(int _value) { CString t_str; t_str.Format(_T("%d"), _value); return t_str; } double _toDouble(CString _str) { return _ttof(_str); } char* CStringToCharArray(CString str) { int str_len = WideCharToMultiByte(CP_ACP, 0, str, str.GetLength(), NULL, 0, NULL, NULL);//计算字节数 char* CharArray = new char[str_len + 1]; WideCharToMultiByte(CP_ACP, 0, str, str.GetLength(), CharArray, str_len, NULL, NULL); CharArray[str_len] = '\0'; return CharArray; } void SplitString(const std::string& s, std::vector<std::string>& v, const std::string& c) { std::string::size_type pos1, pos2; pos2 = s.find(c); pos1 = 0; while (std::string::npos != pos2) { v.push_back(s.substr(pos1, pos2 - pos1)); pos1 = pos2 + c.size(); pos2 = s.find(c, pos1); } if (pos1 != s.length()) v.push_back(s.substr(pos1)); }

Accum TrustedAccum::TEEaccum(Stats &stats, Nodes nodes, Vote<Void, Cert> votes[MAX_NUM_SIGNATURES]) { View v = votes[0].getCData().getView(); View highest = 0; Hash hash = Hash(); std::set signers; for(int i = 0; i < MAX_NUM_SIGNATURES && i < this->qsize; i++) { Vote<Void, Cert> vote = votes[i]; CData<Void, Cert> data = vote.getCData(); Sign sign = vote.getSign(); PID signer = sign.getSigner(); Cert cert = data.getCert(); bool vd = verifyCData(stats, nodes, data, sign); bool vc = verifyCert(stats, nodes, cert); if(data.getPhase() == PH1_NEWVIEW && data.getView() == v && signers.find(signer) == signers.end() && vd && vc) { if(DEBUG1) { std::cout << KMAG << "[" << this->id << "]" << "inserting signer" << KNRM << std::endl; } signers.insert(signer); if(cert.getView() >= highest) { highest = cert.getView(); hash = cert.getHash(); } } else { if(DEBUG1) { std::cout << KMAG << "[" << this->id << "]" << "vote:" << vote.prettyPrint() << KNRM << std::endl; } if(DEBUG1) { std::cout << KMAG << "[" << this->id << "]" << "not inserting signer (" << signer << ") because:" << "check-phase=" << std::to_string(data.getPhase() == PH1_NEWVIEW) << "(" << data.getPhase() << "," << PH1_NEWVIEW << ")" << ";check-view=" << std::to_string(data.getView() == v) << ";check-notin=" << std::to_string(signers.find(signer) == signers.end()) << ";verif-data=" << std::to_string(vd) << ";verif-cert=" << std::to_string(vc) << KNRM << std::endl; } } } bool set = true; unsigned int size = signers.size(); std::string text = std::to_string(set) + std::to_string(v) + std::to_string(highest) + hash.toString() + std::to_string(size); Sign sign(this->priv,this->id,text); return Accum(v, highest, hash, size, sign); }

void detectAndDisplay(Mat frame); /** Global variables / CascadeClassifier face_cascade; CascadeClassifier eyes_cascade; /* @function main / int main(int argc, const char* argv) { CommandLineParser parser(argc, argv, "{help h||}" "{face_cascade|data/haarcascades/haarcascade_frontalface_alt.xml|Path to face cascade.}" "{eyes_cascade|data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|Path to eyes cascade.}" "{camera|0|Camera device number.}"); parser.about("\nThis program demonstrates using the cv::CascadeClassifier class to detect objects (Face + eyes) in a video stream.\n" "You can use Haar or LBP features.\n\n"); parser.printMessage(); String face_cascade_name = samples::findFile(parser.get<String>("face_cascade")); String eyes_cascade_name = samples::findFile(parser.get<String>("eyes_cascade")); //-- 1. Load the cascades if (!face_cascade.load(face_cascade_name)) { cout << "--(!)Error loading face cascade\n"; return -1; }; if (!eyes_cascade.load(eyes_cascade_name)) { cout << "--(!)Error loading eyes cascade\n"; return -1; }; int camera_device = parser.get<int>("camera"); VideoCapture capture; //-- 2. Read the video stream capture.open(camera_device); if (!capture.isOpened()) { cout << "--(!)Error opening video capture\n"; return -1; } Mat frame; while (capture.read(frame)) { if (frame.empty()) { cout << "--(!) No captured frame -- Break!\n"; break; } //-- 3. Apply the classifier to the frame detectAndDisplay(frame); if (waitKey(10) == 27) { break; // escape } } return 0; }写出实现步骤

最新推荐

recommend-type

Keras load_model 导入错误的解决方式

print(f'Sorry, I cannot find the "{string}" file.') ``` 确保在加载模型前使用`os.path.exists()`检查文件是否存在,这样可以避免因路径错误导致的加载失败。此外,注意在Windows系统中,路径字符串通常需要...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**
recommend-type

Python的六种数据类型

Python是一种动态类型的高级编程语言,它的六种基本数据类型包括: 1. **数字类型(Numeric Types)**:主要有整型(int)、浮点型(float)、复数型(complex)。整型用于表示整数值,浮点型用于存储小数,复数型用于处理复数。 2. **字符串类型(String Type)**:用单引号('')或双引号("")包围的文本序列,用来存储文本数据。 3. **布尔类型(Boolean Type)**:只有两个值,True和False,表示逻辑判断的结果。 4. **列表类型(List Type)**:有序的可变序列,可以包含不同类型的元素。 5. **元组类型
recommend-type

DFT与FFT应用:信号频谱分析实验

"数字信号处理仿真实验教程,主要涵盖DFT(离散傅里叶变换)和FFT(快速傅里叶变换)的应用,适用于初学者进行频谱分析。" 在数字信号处理领域,DFT(Discrete Fourier Transform)和FFT(Fast Fourier Transform)是两个至关重要的概念。DFT是将离散时间序列转换到频域的工具,而FFT则是一种高效计算DFT的方法。在这个北京理工大学的实验中,学生将通过实践深入理解这两个概念及其在信号分析中的应用。 实验的目的在于: 1. 深化对DFT基本原理的理解,这包括了解DFT如何将时域信号转化为频域表示,以及其与连续时间傅里叶变换(DTFT)的关系。DFT是DTFT在有限个等间隔频率点上的取样,这有助于分析有限长度的离散信号。 2. 应用DFT来分析信号的频谱特性,这对于识别信号的频率成分至关重要。在实验中,通过计算和可视化DFT的结果,学生可以观察信号的幅度谱和相位谱,从而揭示信号的频率组成。 3. 通过实际操作,深入理解DFT在频谱分析中的作用,以及如何利用它来解释现实世界的现象并解决问题。 实验内容分为几个部分: (1)首先,给出了一个5点序列x,通过计算DFT并绘制幅度和相位图,展示了DFT如何反映信号的幅度和相位特性。 (2)然后,使用相同序列x,但这次通过FFT进行计算,并用茎图展示结果。FFT相比于DFT提高了计算效率,尤其是在处理大数据集时。 (3)进一步扩展,序列x通过添加零填充至128点,再次进行FFT计算。这样做可以提高频率分辨率,使得频谱分析更为精确。 (4)最后,通过一个包含两种正弦波的11点序列,演示了DFT如何提供DTFT的近似,当N增大时,DFT的结果更接近于DTFT。 实验通过MATLAB代码实现,学生可以在实际操作中熟悉这些概念,从而增强对数字信号处理理论的理解。通过这些实验,学生不仅能够掌握DFT和FFT的基本运算,还能学会如何利用它们来分析和解析复杂的信号结构。