L2-norm distance
时间: 2024-01-01 09:04:34 浏览: 216
通过最小的L1规范测距标准对TWSVM进行有效而强大的分类
The L2-norm distance, also known as the Euclidean distance, is a measure of the distance between two points in a Euclidean space. It calculates the straight-line distance between the two points.
In a two-dimensional space, the L2-norm distance between two points (x1, y1) and (x2, y2) can be calculated using the Pythagorean theorem:
distance = sqrt((x2 - x1)^2 + (y2 - y1)^2)
In a higher-dimensional space, the formula extends to:
distance = sqrt((x2 - x1)^2 + (y2 - y1)^2 + ... + (zn - z1)^2)
The L2-norm distance is commonly used in various fields, such as machine learning, data analysis, and computer vision, to measure the similarity or dissimilarity between data points.
阅读全文