我有一个胶合木结构燃烧的温度数据,每秒的天花板温度数据,氧气体积分数,CO2体积分数数据,想通过一个LSTM模型来预测火灾轰燃的发生,请帮我给出这段时间序列预测的代码
时间: 2024-10-21 20:08:02 浏览: 18
在Python中,你可以使用Keras库(现在是TensorFlow库的一部分)来构建一个LSTM(长短期记忆网络)模型,用于预测火灾轰燃。以下是一个基本的代码框架,假设你已经安装了所需的库,例如pandas、numpy、tensorflow和keras:
```python
import pandas as pd
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from sklearn.preprocessing import MinMaxScaler
# 假设df是你的DataFrame,包含所有数据
data = pd.read_csv('your_data.csv') # 请替换为实际文件路径
# 数据预处理
data['timestamp'] = data.index # 如果时间列为索引
scaler = MinMaxScaler(feature_range=(0, 1)) # 对数值特征归一化
# 分割数据为特征X和目标y (这里假设最后一列是轰燃指标)
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
# 将数据划分为训练集和测试集
train_size = int(len(X) * 0.8)
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]
# 归一化数据
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 转换为适合LSTM的时间序列输入格式(步长1)
def create_dataset(data, look_back=1):
X, Y = [], []
for i in range(len(data)-look_back-1):
a = data[i:(i+look_back), 0:-1]
X.append(a)
Y.append(data[i + look_back, -1])
return np.array(X), np.array(Y)
look_back = 1 # 看过去的步数
X_train, y_train = create_dataset(X_train, look_back)
X_test, y_test = create_dataset(X_test, look_back)
# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(look_back, X.shape[2]), return_sequences=True))
model.add(LSTM(50))
model.add(Dense(1))
# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练模型
history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_test, y_test))
# 预测
predicted_fire_ignition = model.predict(X_test)
# 可视化和评估
# ...
#
阅读全文