def read_data(data_dir) datas=[] labels=[] fpaths=[] for fname in os.listdir(data_dir) fpath=os.path.jion(data_dir,fname) fpaths.append(fpath) image=Image.open(fpath) data=np.array(image)/255.0 label=int(fname.spilt("_")[0]) datas.append(data) labels.append(label) datas=np.array(datas) labels=np.array(labels)
时间: 2024-04-11 14:31:38 浏览: 197
这段代码的作用是读取一个目录下的图像数据和标签,并将它们存储在一个数据集中。具体来说,它的实现如下:
1. 创建空的数据、标签和文件路径列表:`datas=[]`, `labels=[]`, `fpaths=[]`。
2. 遍历给定目录下的所有文件名:`for fname in os.listdir(data_dir)`
3. 构建每个文件的完整路径:`fpath=os.path.join(data_dir,fname)`,并将其添加到文件路径列表中:`fpaths.append(fpath)`。
4. 使用PIL库中的`Image.open()`方法打开当前文件的图像。
5. 将图像数据转换为NumPy数组,并进行归一化处理(将像素值除以255.0):`data=np.array(image)/255.0`。
6. 从文件名中提取标签信息,假设文件名的命名规则为"label_XXX.jpg",则提取标签的方法是通过下划线分割文件名并取第一个元素并转换为整数:`label=int(fname.split("_")[0])`。
7. 将图像数据和标签分别添加到数据和标签列表中:`datas.append(data)`, `labels.append(label)`。
8. 将数据和标签列表转换为NumPy数组:`datas=np.array(datas)`, `labels=np.array(labels)`。
这段代码的目的是将图像数据和标签加载到内存中,以便进行后续的数据处理和模型训练。
相关问题
to_csv_name = 'basic.csv' to_csv_path = os.path.join(os.path.abspath( os.path.join(os.path.join(os.path.dirname(__file__), ".."), 'static/spider/data')), to_csv_name) pd_datas = pd.read_csv(to_csv_path, encoding='utf-8').to_dict(orient='record') to_data = []
这段代码是将一个名为"basic.csv"的文件读入为一个Pandas DataFrame对象,并将其转换为Python字典对象。该文件位于项目根目录下的"static/spider/data"文件夹中。然后,将字典数据存储在名为"to_data"的列表对象中。具体来说,该代码使用了Pandas库的read_csv函数读取CSV文件,并使用to_dict方法将DataFrame对象转换为字典对象。其中,orient参数指定了字典的形式,'record'表示每行数据将转换为一个字典对象。
hydrology_datas = Hydrology_data.query.filter(Hydrology_data.data_kind == marine_hydrology_one.data_set_name).all()
这段代码使用 SQLAlchemy 的查询语句从 Hydrology_data 表中筛选出 data_kind 列等于 marine_hydrology_one.data_set_name 的所有数据,并将其存储在 hydrology_datas 变量中。其中,Hydrology_data 是一个 SQLAlchemy 模型类,代表 Hydrology_data 表的数据模型。all() 方法表示查询结果以列表形式返回所有匹配的数据。
阅读全文