dec_out=dec_out[:,-96:,:]

时间: 2024-04-15 10:24:15 浏览: 14
这行代码是对张量 `dec_out` 进行切片操作,保留最后一个维度的后96个元素。 假设 `dec_out` 是一个形状为 `(batch_size, seq_len, features)` 的张量,其中 `seq_len` 表示序列长度,`features` 表示特征的数量。 `dec_out[:, -96:, :]` 表示对 `dec_out` 张量进行索引,保留第二个维度的最后96个元素。结果将是一个形状为 `(batch_size, 96, features)` 的新张量,其中只包含原始张量的最后96个时间步的数据。 这种切片操作通常用于截取序列的最后一部分,可能是为了去除序列的前面部分或者只关注序列的后面部分。
相关问题

解释 bool dec_park_status = DataQueues::Instance()->decision_park_out_queue(dec_park_lot);

这段代码是在一个布尔类型的变量`dec_park_status`中存储一个表达式的结果。 表达式是调用`DataQueues::Instance()->decision_park_out_queue(dec_park_lot)`函数,其中`DataQueues::Instance()`返回一个指向`DataQueues`类实例的指针,然后通过指针调用`decision_park_out_queue`函数,并传入参数`dec_park_lot`。 根据函数名可以猜测,`decision_park_out_queue`函数可能用于决策停车场的出口操作。该函数可能会进行一些逻辑处理,并返回一个布尔类型的结果。 代码将这个结果存储在`dec_park_status`变量中,以供后续的代码逻辑使用。这个变量的值将取决于`decision_park_out_queue`函数的返回值,如果返回值为真,则`dec_park_status`为true,否则为false。

解释 instance 的作用:bool dec_park_status = DataQueues::Instance()->decision_park_out_queue(dec_park_lot);

在这段代码中,`instance`是一个单例模式的实例。单例模式是一种设计模式,它确保类只有一个实例,并提供一个全局访问点以访问该实例。 `DataQueues`是一个类,通过调用`Instance()`方法获得其唯一的实例。这个实例在整个应用程序中是唯一的,并且可以被多个地方共享和访问。 在上述代码中,通过调用`DataQueues::Instance()`方法,获取到`DataQueues`的唯一实例,并使用箭头操作符`->`调用该实例的`decision_park_out_queue(dec_park_lot)`方法。 换句话说,`instance`的作用是获取`DataQueues`类的单例实例,并通过该实例调用`decision_park_out_queue`方法。这样做的目的是使用单例实例来执行特定的功能或操作。在这个例子中,可能是通过调用`decision_park_out_queue`方法来处理停车场出口的决策。最后,将该方法的返回值存储在布尔变量`dec_park_status`中。

相关推荐

//将16位2进制数data转为5*4位BCD码 reg[3:0] dec_out0=4'h0; reg[3:0] dec_out1=4'h0; reg[3:0] dec_out2=4'h0; reg[3:0] dec_out3=4'h0; reg[3:0] dec_out4=4'h0; wire [15:0] product; assign product=data; wire [15:0] bin_in=product; wire[4:0] c_in; wire[4:0] c_out; reg [3:0] dec_sreg0=4'h0; reg [3:0] dec_sreg1=4'h0; reg [3:0] dec_sreg2=4'h0; reg [3:0] dec_sreg3=4'h0; reg [3:0] dec_sreg4=4'h0; wire[3:0] next_sreg0,next_sreg1,next_sreg2,next_sreg3,next_sreg4; reg [7:0] bit_cnt=8'h0; reg [15:0] bin_sreg; wire load=~|bit_cnt;//读入二进制数据,准备转换 wire convert_ready= (bit_cnt==8'h11);//转换成功 wire convert_end= (bit_cnt==8'h12);//完毕,重新开始 always @ (posedge clk) begin if(convert_end) bit_cnt<=4'h0; else bit_cnt<=bit_cnt+4'h1; end always @ (posedge clk) begin if(load) bin_sreg<=bin_in; else bin_sreg <={bin_sreg[14:0],1'b0}; end assign c_in[0] =bin_sreg[15]; assign c_in[1] =(dec_sreg0>=5); assign c_in[2] =(dec_sreg1>=5); assign c_in[3] =(dec_sreg2>=5); assign c_in[4] =(dec_sreg3>=5); assign c_out[0]=c_in[1]; assign c_out[1]=c_in[2]; assign c_out[2]=c_in[3]; assign c_out[3]=c_in[4]; assign c_out[4]=(dec_sreg4>=5); //确定移位输出 assign next_sreg0=c_out[0]? ({dec_sreg0[2:0],c_in[0]}+4'h6):({dec_sreg0[2:0],c_in[0]}); assign next_sreg1=c_out[1]? ({dec_sreg1[2:0],c_in[1]}+4'h6):({dec_sreg1[2:0],c_in[1]}); assign next_sreg2=c_out[2]? ({dec_sreg2[2:0],c_in[2]}+4'h6):({dec_sreg2[2:0],c_in[2]}); assign next_sreg3=c_out[3]? ({dec_sreg3[2:0],c_in[3]}+4'h6):({dec_sreg3[2:0],c_in[3]}); assign next_sreg4=c_out[4]? ({dec_sreg4[2:0],c_in[4]}+4'h6):({dec_sreg4[2:0],c_in[4]}); //装入数据 always @ (posedge clk) begin if(load) begin dec_sreg0<=4'h0; dec_sreg1<=4'h0; dec_sreg2<=4'h0; dec_sreg3<=4'h0; dec_sreg4<=4'h0; end else begin dec_sreg0<=next_sreg0; dec_sreg1<=next_sreg1; dec_sreg2<=next_sreg2; dec_sreg3<=next_sreg3; dec_sreg4<=next_sreg4; end end //输出 always @ (posedge clk) begin if(convert_ready) begin dec_out0<=dec_sreg0; dec_out1<=dec_sreg1; dec_out2<=dec_sreg2; dec_out3<=dec_sreg3; dec_out4<=dec_sreg4; end end

"uniform float gltf_u_dec_texcoord_0_normConstant; uniform vec2 gltf_u_dec_texcoord_0_min; vec2 gltf_a_dec_texcoord_0; uniform float gltf_u_dec_position_normConstant; uniform vec3 gltf_u_dec_position_min; vec3 gltf_a_dec_position; precision highp float; uniform mat4 u_modelViewMatrix; uniform mat4 u_projectionMatrix; #ifdef APPLY_FLATTEN uniform sampler2D gltf_flattenTexture; uniform vec4 gltf_flattenBounds; uniform mat4 gltf_flattenRenderMatrix; uniform mat4 gltf_flattenInverseRenderMatrix; uniform float gltf_flattenHeight; #endif attribute vec3 a_position; attribute vec2 a_texcoord_0; varying vec2 v_texcoord_0; void gltf_decoded_POSITION() { vec3 weightedPosition = gltf_a_dec_position; vec4 position = vec4(weightedPosition, 1.0); position = u_modelViewMatrix * position; gl_Position = u_projectionMatrix * position; #ifdef PICK_VERTEX gl_PointSize = 1.0; #endif #ifdef APPLY_FLATTEN vec4 positionRelative = gltf_flattenInverseRenderMatrix * position; vec2 flattenBoundsDimension = gltf_flattenBounds.zw - gltf_flattenBounds.xy; vec2 texCoord = (positionRelative.xy - gltf_flattenBounds.xy) / flattenBoundsDimension; bool outOfBounds = texCoord.x > 1.0 || texCoord.x < 0.0 || texCoord.y > 1.0 || texCoord.y < 0.0; vec4 color = texture2D(gltf_flattenTexture, texCoord); if(!outOfBounds && abs(color.r - 1.0) < 0.1) { positionRelative.z = gltf_flattenHeight + sin(positionRelative.z) * 0.1; gl_Position = u_projectionMatrix * gltf_flattenRenderMatrix * positionRelative; } #endif v_texcoord_0 = gltf_a_dec_texcoord_0; } void gltf_decoded_TEXCOORD_0() { gltf_a_dec_position = gltf_u_dec_position_min + a_position * gltf_u_dec_position_normConstant; gltf_decoded_POSITION(); } void main() { gltf_a_dec_texcoord_0 = gltf_u_dec_texcoord_0_min + a_texcoord_0 * gltf_u_dec_texcoord_0_normConstant; gltf_decoded_TEXCOORD_0(); } "

/// programmable block decoder to support protocols such as 64b66b, 64b67b, 128b130b, 128b132b module mppcs_block_dec #( parameter DW = 32, /// max. data width parameter DATA_WIDTH = 32, parameter HW = 4, /// max. header width 4 parameter ND = 16 /// max. number of data per block parameter DATA_PER_BLOCK = 64, ) ( /// ingress data interface input logic [DW-1:0] data_in, /// ingress data before header extraction input logic in_valid, /// ingress flow control output logic in_ready, /// ingress flow control /// egress data interface output logic block_start, /// block synchronization output logic [HW-1:0] header_out, /// block header output logic [DW-1:0] data_out, /// egress data after header extraction output logic out_valid, /// egress flow control input logic out_ready, /// egress flow control /// control options input [$clog2(DW)-1:0] msb_data, /// number of data bits - 1 input [$clog2(HW)-1:0] msb_header, /// number of header bits - 1 input [$clog2(ND)-1:0] msb_num_data, /// number of data per block - 1 output logic sync_track, /// block sync tracking signal input logic sync_mode, /// 0: use external sync directly, 1 : use internal sync after assertion of external sync input logic [3:0] sync_offset, /// offset between sync and block start signal input logic sync_start, /// external sync input logic enable, /// 0: clock-gated, 1: mission mode input logic bypass, /// 1: data pass-through without header insertion /// clock & reset input clk, input rst ); /// mask unused bits in header and data wire [DW+1 :0] data_msk = {({{(DW-1){1'b0}},1'b1}<<msb_data),1'b0} - 1'b1; wire [DW-1:0] data_eff = data_msk[DW-1:0] & data_in; wire [HW+1 :0] header_msk = {({{(HW-1){1'b0}},1'b1}<<msb_header),1'b0} - 1'b1; /// block synchronization wire block_sync_en = enable & ~bypass; logic [$clog2(ND)-1:0] cnt_block_data,cnt_block_data_nxt; logic sync_start_lat; always @(posedge clk or posedge rst) begin if (rst) sync_start_lat <= 0; else sync_start_lat <= sync_start; end

把这份代码转换成c++代码var n,i,j,p,x,min,tot,t,len:longint; 2 out_,in_,a,heap:array[0..30005] of longint; 3 son,nxt:array[0..1000005] of longint; 4 lnk:array[0..30005] of longint; 5 procedure print_no; 6 begin 7 writeln('no solution'); 8 close(input); close(output); 9 halt; 10 end; 11 procedure put(id:longint); 12 var i:longint; 13 begin 14 inc(len); heap[len]:=id; i:=len; 15 while (i>1) do 16 begin 17 if (heap[i>>1]>heap[i]) then 18 begin 19 heap[0]:=heap[i]; heap[i]:=heap[i>>1]; heap[i>>1]:=heap[0]; 20 i:=i>>1; 21 end 22 else break; 23 end; 24 end; 25 function get:longint; 26 var fa,son:longint; 27 begin 28 get:=heap[1]; heap[1]:=heap[len]; dec(len); fa:=1; 29 while (fa<<1<=len) do 30 begin 31 if (fa<<1+1>len) or (heap[fa<<1]<heap[fa<<1+1]) then son:=fa*2 32 else son:=fa*2+1; 33 if heap[fa]>heap[son] then 34 begin 35 heap[0]:=heap[fa]; heap[fa]:=heap[son]; heap[son]:=heap[0]; 36 fa:=son; 37 end 38 else break; 39 end; 40 end; 41 procedure add(x,y:longint); 42 begin 43 inc(tot); son[tot]:=y; nxt[tot]:=lnk[x]; lnk[x]:=tot; 44 end; 45 begin 46 readln(n); 47 for i:=1 to n do 48 begin 49 read(out_[i]); 50 for j:=1 to out_[i] do 51 begin 52 read(x); inc(in_[x]); add(i,x); 53 end; 54 end; 55 min:=maxlongint; 56 for i:=1 to n do 57 if (in_[i]=0) then begin min:=0; put(i); end; 58 if min<>0 then print_no; 59 repeat 60 p:=get; inc(t); a[t]:=p; j:=lnk[p]; 61 in_[p]:=-1; 62 while j<>0 do 63 begin 64 dec(in_[son[j]]); 65 if in_[son[j]]=0 then put(son[j]); 66 j:=nxt[j]; 67 end; 68 until len=0; 69 writeln(t); 70 for i:=1 to t do write(a[i],' '); 71 end.

最新推荐

recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

罗兰贝格:德隆人力资源管理体系gltp.pptx

罗兰贝格:德隆人力资源管理体系gltp.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.