时序图卷积神经网络代码
时间: 2023-10-12 16:04:51 浏览: 115
以下是一个简单的时序图卷积神经网络(Temporal Graph Convolutional Network)的代码例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class TGCNLayer(nn.Module):
def __init__(self, in_channels, out_channels):
super(TGCNLayer, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.linear = nn.Linear(out_channels, out_channels)
def forward(self, x, A):
x = self.conv(x)
x = torch.matmul(A, x) # A为时序图的邻接矩阵
x = self.linear(x)
x = F.relu(x)
return x
class TGCN(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super(TGCN, self).__init__()
self.layer1 = TGCNLayer(in_channels, hidden_channels)
self.layer2 = TGCNLayer(hidden_channels, out_channels)
def forward(self, x, A):
x = self.layer1(x, A)
x = self.layer2(x, A)
return x
# 使用示例
in_channels = 3 # 输入特征的通道数
hidden_channels = 16 # 隐层特征的通道数
out_channels = 64 # 输出特征的通道数
num_nodes = 10 # 时序图的节点数
x = torch.randn(1, in_channels, num_nodes, num_nodes) # 输入特征
A = torch.randn(1, num_nodes, num_nodes) # 邻接矩阵
model = TGCN(in_channels, hidden_channels, out_channels)
output = model(x, A)
```
请注意,这只是一个简单的示例,实际应用中可能需要根据具体任务进行修改和调整。此外,代码中的示例输入特征和邻接矩阵是随机生成的,并不具有实际意义,您需要根据实际情况进行替换。
阅读全文