stm32 spi 寄存器

时间: 2024-08-24 10:00:51 浏览: 37
SPI(Serial Peripheral Interface)是一种高速的、全双工、同步的通信总线,它可以用于连接微控制器和外部设备,如存储器、传感器、显示器等。在STM32中,SPI通信是通过SPI寄存器来实现的。SPI寄存器包括控制寄存器和状态寄存器,控制寄存器用于设置SPI的工作模式、数据位数、时钟极性等参数,状态寄存器则用于检测SPI的状态,如发送缓冲区是否为空、接收缓冲区是否有数据等。通过对SPI寄存器的配置,可以实现STM32与其他设备之间的高速通信。
相关问题

STM32寄存器读SPI

在STM32中,要读取SPI寄存器,可以通过以下步骤进行操作: 1. 配置SPI控制寄存器(CR1): - 设置数据帧格式、数据大小、时钟极性和相位等参数。 - 使能SPI主模式或从模式。 - 使能SPI总线。 2. 配置SPI数据寄存器(DR): - 写入要发送的数据到SPI数据寄存器。 3. 等待发送完成: - 可以通过检查状态寄存器(SR)中的位标志来确认发送是否完成。 4. 读取接收到的数据: - 通过读取SPI数据寄存器(DR)来获取接收到的数据。 下面是一个示例代码,演示了如何读取SPI寄存器: ```c #include "stm32f4xx.h" void SPI_Configuration(void) { // 配置SPI控制寄存器 SPI1->CR1 = SPI_CR1_SSM | SPI_CR1_SSI | SPI_CR1_BR_0 | SPI_CR1_MSTR; SPI1->CR2 = 0; // 使能SPI总线 SPI1->CR1 |= SPI_CR1_SPE; } uint8_t SPI_Read(void) { // 写入要发送的数据到SPI数据寄存器 SPI1->DR = 0xFF; // 等待发送完成 while (!(SPI1->SR & SPI_SR_TXE)); // 等待接收完成 while (!(SPI1->SR & SPI_SR_RXNE)); // 读取接收到的数据 return SPI1->DR; } int main(void) { // 初始化SPI配置 SPI_Configuration(); // 读取SPI寄存器 uint8_t data = SPI_Read(); // 相关问题: // 1. 什么是SPI? // 2. 如何配置STM32的SPI控制寄存器? // 3. 如何判断SPI发送是否完成? // 4. 如何判断SPI接收是否完成? return 0; } ```

stm32 spi的CR1寄存器

STM32的SPI_CR1寄存器是用于配置SPI外设的控制寄存器之一。它包含了多个位字段,用于设置SPI的工作模式、数据位长度、时钟极性和相位等参数。 以下是一个示例代码,展示如何配置SPI_CR1寄存器的一些常用位字段: ```c #include "stm32f4xx.h" void SPI_Configuration(void) { // 使能SPI时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE); // 配置SPI1的CR1寄存器 SPI1->CR1 = SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0; // 设置波特率分频为 fPCLK/32 SPI1->CR1 |= SPI_CR1_CPOL | SPI_CR1_CPHA; // 设置时钟极性为高电平,时钟相位为第二个边沿 SPI1->CR1 |= SPI_CR1_MSTR; // 设置为主机模式 SPI1->CR1 |= SPI_CR1_SSM | SPI_CR1_SSI; // 设置软件片选控制 // 启用SPI1外设 SPI1->CR1 |= SPI_CR1_SPE; } ``` 在上述代码中,我们使用了STM32的库函数来配置SPI1的CR1寄存器。首先,我们使能了SPI1的时钟,然后通过对CR1寄存器的位字段进行设置来配置SPI的工作模式、时钟极性和相位等参数。最后,我们启用了SPI1外设。

相关推荐

最新推荐

recommend-type

STM32 SPI DMA 的使用

"STM32 SPI DMA 的使用" 本文总结了STM32 SPI DMA 的使用,包括SPI总线的特点与注意点、SPI DMA的使用、NSS的说明和注意点、DMA的说明、SPI_DMA的通信过程和相关代码。 一、SPI总线的特点与注意点 SPI(Serial ...
recommend-type

STM32 SPI接口读写SPI flash实验

"STM32 SPI接口读写SPI flash实验" 本实验的主要目的是学习SPI的基本工作原理,通过实验加深对STM32 SPI的理解,并利用STM32的SPI11和SPI接口的flash芯片进行通信,读写测试,并将测试结果用串口打印出来。 SPI...
recommend-type

STM32的使用之SPI通信DMA模式

STM32的SPI通信DMA模式 在本文中,我们将深入探讨STM32微控制器中的SPI通信DMA模式。SPI(Serial Peripheral Interface)是一种同步串行通信协议,广泛应用于嵌入式系统中。而DMA(Direct Memory Access)则是一种...
recommend-type

stm32f103数据手册

STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的32位微控制器,属于STM32系列的中密度性能线产品。这款微控制器提供了64KB或128KB的闪存以及20KB的SRAM,适用于各种嵌入式应用,如...
recommend-type

STM32H750开发指南-寄存器版本_V1.01.pdf

在《STM32H750开发指南-寄存器版本_V1.01.pdf》中,作者或团队——正点原子,为开发者提供了一个详尽的学习路径,帮助他们掌握STM32H750的各种功能。该指南分为三个主要部分: 1. **硬件篇**:这部分主要介绍用于...
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。