import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 15 iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target h = .02 # step size in the mesh cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) weights = 'distance' clf = neighbors.KNeighborsClassifier(n_neighbors, weights)() clf.fit(X, y) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=20) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')"% (n_neighbors,weights)) plt.show()

时间: 2024-04-18 20:30:37 浏览: 21
这段代码是一个示例,演示了如何使用 k-最近邻算法进行三类别的分类,并使用 matplotlib 绘制分类结果的决策边界和数据点。 首先,导入必要的库,包括 numpy、matplotlib 和 sklearn。然后,设置了一些参数,如 k 值、数据集(这里使用的是鸢尾花数据集)以及步长 h。接下来,定义了两个颜色映射,用于可视化分类结果。 然后,创建了一个 KNeighborsClassifier 对象 clf,传入了 k 值和权重参数。调用 fit() 方法拟合模型,传入特征数据 X 和标签数据 y。 接着,计算了决策边界的网格点坐标,并使用 predict() 方法对网格点进行预测,得到预测结果 Z。最后,将预测结果 Z 重塑为与网格点坐标相同的形状。 最后,使用 matplotlib 绘制了分类结果的决策边界和数据点。pcolormesh() 函数用于绘制决策边界的背景颜色,scatter() 函数用于绘制数据点。设置了坐标轴范围、标题等,并调用 show() 函数显示图形。
相关问题

在Python中想运行from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit,StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_auc_score import math import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random怎么操作

要在Python中运行这些代码,你需要确保已经安装了相应的包。大多数包都可以使用`pip`进行安装。 首先,在命令行中运行以下命令来安装所需的包: ```bash pip install scikit-learn pandas matplotlib numpy ``` 然后,在你的Python脚本中导入所需的库: ```python from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit, StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random ``` 请确保在运行这些代码之前,已经安装了所需的Python库。如果遇到任何问题,请确保已正确安装这些库,并且版本与代码兼容。

现有1500个二维空间的数据点,数据产生代码范例如下所示 import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.datasets import make_swiss_roll # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise=noise) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], cmap=plt.cm.Spectral) ,编写一个python程序不调用locally_linear_embedding,实现LLE降维

LLE(Locally Linear Embedding)是一种非线性降维方法,它可以将高维数据映射到低维空间中,并且保持数据之间的局部关系。下面是一个实现LLE降维的Python程序。 ```python import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import NearestNeighbors def lle(X, n_neighbors, n_components): """ LLE降维算法实现 :param X: 数据矩阵,每一行代表一个样本 :param n_neighbors: 邻居个数 :param n_components: 降维后的维度 :return: 降维后的数据矩阵 """ # 首先计算每个样本的k个邻居,保存邻居的索引 knn = NearestNeighbors(n_neighbors=n_neighbors + 1).fit(X) _, indices = knn.kneighbors(X) # 计算每个样本的权重矩阵W W = np.zeros((X.shape[0], X.shape[0])) for i in range(X.shape[0]): xi = X[i] neighbors = X[indices[i]][1:] G = neighbors - xi GtG = np.dot(G, G.T) w = np.linalg.solve(GtG, np.ones(n_neighbors) / n_neighbors) w /= np.sum(w) for j, neighbor in zip(indices[i][1:], w): W[i, j] = neighbor # 计算重构权重矩阵M I = np.eye(X.shape[0]) M = np.dot((I - W).T, (I - W)) # 计算特征值和特征向量 _, eig_vecs = np.linalg.eig(M) indices = np.argsort(np.abs(eig_vecs.real), axis=1)[:, :n_components] W = eig_vecs.real / eig_vecs.real.sum(axis=0) # 返回降维后的数据 return W[:, 1:n_components+1] # 生成数据 n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise=noise) # LLE降维 X_lle = lle(X, n_neighbors=12, n_components=2) # 可视化 plt.scatter(X_lle[:, 0], X_lle[:, 1], cmap=plt.cm.Spectral) plt.show() ``` 在上述代码中,我们首先计算每个样本的k个邻居,并计算每个样本的权重矩阵W。然后,我们计算重构权重矩阵M,并计算特征值和特征向量。最后,我们返回降维后的数据矩阵。通过调用 make_swiss_roll 函数生成数据,然后调用 lle 函数将数据降维到2维,最后使用 matplotlib 可视化降维后的数据。

相关推荐

import streamlit as st import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier import streamlit_echarts as st_echarts from sklearn.metrics import accuracy_score,confusion_matrix,f1_score def pivot_bar(data): option = { "xAxis":{ "type":"category", "data":data.index.tolist() }, "legend":{}, "yAxis":{ "type":"value" }, "series":[ ] }; for i in data.columns: option["series"].append({"data":data[i].tolist(),"name":i,"type":"bar"}) return option st.markdown("mode pracitce") st.sidebar.markdown("mode pracitce") df=pd.read_csv(r"D:\课程数据\old.csv") st.table(df.head()) with st.form("form"): index_val = st.multiselect("choose index",df.columns,["Response"]) agg_fuc = st.selectbox("choose a way",[np.mean,len,np.sum]) submitted1 = st.form_submit_button("Submit") if submitted1: z=df.pivot_table(index=index_val,aggfunc = agg_fuc) st.table(z) st_echarts(pivot_bar(z)) df_copy = df.copy() df_copy.drop(axis=1,columns="Name",inplace=True) df_copy["Response"]=df_copy["Response"].map({"no":0,"yes":1}) df_copy=pd.get_dummies(df_copy,columns=["Gender","Area","Email","Mobile"]) st.table(df_copy.head()) y=df_copy["Response"].values x=df_copy.drop(axis=1,columns="Response").values X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2) with st.form("my_form"): estimators0 = st.slider("estimators",0,100,10) max_depth0 = st.slider("max_depth",1,10,2) submitted = st.form_submit_button("Submit") if "model" not in st.session_state: st.session_state.model = RandomForestClassifier(n_estimators=estimators0,max_depth=max_depth0, random_state=1234) st.session_state.model.fit(X_train, y_train) y_pred = st.session_state.model.predict(X_test) st.table(confusion_matrix(y_test, y_pred)) st.write(f1_score(y_test, y_pred)) if st.button("save model"): pkl_filename = "D:\\pickle_model.pkl" with open(pkl_filename, 'wb') as file: pickle.dump(st.session_state.model, file) 会出什么错误

最新推荐

recommend-type

数据库实验.py

数据库实验.py
recommend-type

机器学习技术对心电图 (ECG) 信号进行分类matlab代码.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

学会学习心理课拒绝诱惑:自制力培养手册.docx

学会学习心理课拒绝诱惑:自制力培养手册.docx
recommend-type

基于matlab+Simulink模拟的微电网系统包括包括电源、电力电子设备等+源码+开发文档(毕业设计&课程设计&项目开发)

基于matlab+Simulink模拟的微电网系统包括包括电源、电力电子设备等+源码+开发文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 项目简介: 这是一个完整的微电网模型,包括电源、电力电子设备、使用MatLab和Simulink的负载和电源模型。该模型基于费萨尔·穆罕默德的硕士论文《微网格建模与仿真》。 什么是微电网 模拟的微电网使用一组电源和负载在与任何集中式电网(宏电网)断开连接的情况下工作,并自主运行,为其局部区域提供电力。该仿真对微电网在稳态下进行建模,以分析其对输入变化的瞬态响应。 此模拟的目的 对系统进行全年模拟,测量负载、产量、电压和频率。 给出简化规划和资源评估阶段的方法。
recommend-type

Translucent Image - Fast Blurred Background UI v4.4.1

Unity插件 Translucent Image 可帮助你构建精美的模糊背景 UI,例如在 iOS/MacOS/Windows 10 Fluent 设计中的 UI。 与许多其他背景模糊解决方案不同,Translucent Image 采用一种对性能影响最小的高效算法,因此用户可以享受更高的帧速率和更长的电池寿命。不仅如此,当你将模糊调高时,它还可以产生完美的平滑效果,而其它资源在高度模糊时会呈现难看的块状图像。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。