MAE MSE RMSE 判断回归模型 代码
时间: 2023-10-15 22:08:21 浏览: 108
基于PCA-PCR的主成分回归的数据回归预测,多变量输入模型,matlab代码 评价指标包括:R2、MAE、MSE、RMSE
5星 · 资源好评率100%
回归模型的评估指标包括MAE(平均绝对误差)、MSE(均方误差)和RMSE(均方根误差)。MAE是预测值与实际值之间的绝对差值的平均值,MSE是预测值与实际值之间差值的平方的平均值,RMSE是MSE的平方根。
为了判断回归模型的好坏,我们希望这些误差指标尽可能小。如果MAE、MSE和RMSE都较小,说明模型的预测结果与实际值较接近,模型的拟合效果较好。
以下是计算MSE的Python代码示例:
```python
from sklearn.metrics import mean_squared_error
def MSE(Y_real, Y_pre):
return mean_squared_error(Y_real, Y_pre)
```
在这个代码中,`Y_real`是实际值,`Y_pre`是预测值。通过调用`mean_squared_error`函数,可以计算出MSE的值。
需要注意的是,对于RMSE,可以通过对MSE的结果取平方根得到。因此,RMSE的计算可以在MSE的基础上进行。
希望这个回答对您有帮助!
#### 引用[.reference_title]
- *1* *2* [回归问题的评价指标 MAE MSE RMSE R2 score Adjusted R2 score 和 重要知识点总结](https://blog.csdn.net/HzauTriste/article/details/127562028)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [回归模型评估指标(MAE、MSE、RMSE、R²、MAPE)](https://blog.csdn.net/y15659037739l/article/details/123971286)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文