请将用python通过dbscan分析上述表格数据,用K-distance Graph确定应使用的eps和min_samples参数
时间: 2024-12-19 22:25:48 浏览: 5
要使用DBSCAN算法对上述表格数据进行聚类,并通过K-distance图来确定合适的`eps`和`min_samples`参数,可以按照以下步骤进行:
### 步骤1:导入必要的库
```python
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import DBSCAN
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt
```
### 步骤2:准备数据
假设数据已经存储在一个CSV文件中,我们可以读取并预处理数据。
```python
# 创建数据字典
data = {
'city': ['郑州', '开封', '洛阳', '平顶山', '安阳', '鹤壁', '新乡', '焦作', '濮阳', '许昌', '漯河', '三门峡', '南阳', '商丘', '信阳', '周口', '驻马店', '济源'],
'legal_entities_num': [1437, 650, 764, 352, 467, 174, 456, 530, 500, 658, 368, 552, 750, 920, 436, 555, 578, 105],
'employed_individuals_num': [22.01, 11.06, 16.87, 20.57, 10.75, 4, 11.82, 11.29, 7.56, 8, 5.54, 5.55, 20.44, 15.81, 30.71, 4.85, 13.39, 2.42],
'highway_length': [12702, 8844, 18342, 13468, 11817, 4464, 13106, 7383, 6465, 9288, 5250, 9520, 38004, 23050, 24755, 21845, 19272, 2284],
'freight_transportation_volume': [19709, 2588, 16570, 9289, 10294, 5018, 16050, 15295, 3172, 5997, 5322, 4424, 15696, 15083, 6610, 15178, 9479, 3906],
'cargo_turnover_expense': [332.36, 98.54, 401.92, 209.27, 416.09, 105.31, 311.43, 431.35, 148.79, 190.71, 108.71, 140.78, 581.94, 421.47, 54.4, 619.24, 149.27, 100.78],
'packages_num': [57.67, 2.41, 7.82, 2.04, 2.68, 0.91, 5.88, 3.87, 1.6, 3.38, 4.25, 1.48, 5.5, 5.68, 2.85, 3.83, 3.47, 0.61],
'package_business_volume': [42375, 1915, 5761, 1177, 2460, 711, 3705, 3307, 1248, 2348, 2222, 843, 3920, 4865, 2257, 2332, 1981, 450],
'postal_route_length': [7942, 1651, 4392, 1802, 1721, 456, 3013, 1189, 1264, 1516, 977, 1338, 5356, 3347, 5902, 3300, 3277, 420],
'postal_business_volume': [39.99, 3.59, 7.32, 3.2, 5, 1.1, 6.49, 3.67, 2.82, 3.79, 2.57, 1.96, 8.63, 7.15, 5.26, 6.8, 6.53, 0.66],
'cargo_vehicles_num': [156902, 43148, 91485, 51677, 42115, 16675, 67624, 31029, 55093, 53622, 25914, 26470, 97209, 86693, 58170, 116577, 57440, 9830],
'phone_users_num': [1281.59, 337.66, 575.81, 377.39, 451.87, 131.64, 529.3, 300.91, 293.46, 335.82, 188.02, 189.79, 655.87, 577.64, 413.23, 538.82, 464.77, 69.33]
}
# 转换为DataFrame
df = pd.DataFrame(data)
# 删除城市列(非数值)
df = df.drop(columns=['city'])
# 标准化数据
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df)
```
### 步骤3:计算K-distance图
```python
# 使用NearestNeighbors找到每个点的最近邻居
neighbors = NearestNeighbors(n_neighbors=2).fit(scaled_data)
distances, indices = neighbors.kneighbors(scaled_data)
# 获取每个点到其第k个最近邻的距离
distances = np.sort(distances[:, 1], axis=0)
# 绘制K-distance图
plt.plot(distances)
plt.xlabel("Points sorted according to distance of k-NN")
plt.ylabel("Epsilon (ε)")
plt.title("K-Distance Graph")
plt.show()
```
### 步骤4:选择`eps`和`min_samples`
从K-distance图中,选择一个“肘部”点作为`eps`值。通常,这个点是距离开始急剧增加的地方。对于`min_samples`,可以选择2或更大的值,具体取决于数据集的特点。
假设我们选择了`eps=0.5`和`min_samples=2`,则可以进行DBSCAN聚类:
```python
# 进行DBSCAN聚类
dbscan = DBSCAN(eps=0.5, min_samples=2)
clusters = dbscan.fit_predict(scaled_data)
# 将聚类结果添加回原始数据框
df['cluster'] = clusters
print(df[['city', 'cluster']])
```
### 结果解释
- `eps`:从K-distance图中选择的“肘部”点对应的`epsilon`值。
- `min_samples`:最小样本数,通常选择2或更大。
- `cluster`:每个城市的聚类标签,-1表示噪声点。
通过以上步骤,你可以使用DBSCAN算法对数据进行聚类,并通过K-distance图来确定合适的`eps`和`min_samples`参数。
阅读全文