pytorch实现残差块
时间: 2023-11-13 13:04:10 浏览: 165
以下是使用PyTorch实现残差块的代码,其中包括了两个卷积层和一个跳跃连接:
```python
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.stride != 1 or identity.shape[1] != out.shape[1]:
identity = nn.Conv2d(identity.shape[1], out.shape[1], kernel_size=1, stride=self.stride, bias=False)(identity)
identity = nn.BatchNorm2d(out.shape[1])(identity)
out += identity
out = self.relu(out)
return out
```
阅读全文
相关推荐

















