pytorch中残差网络代码
时间: 2023-12-11 19:35:52 浏览: 140
在PyTorch中实现残差网络(ResNet)的代码如下:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
residual = x
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, num_classes=10):
super(ResNet, self).__init__()
self.conv = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn = nn.BatchNorm2d(64)
self.layer1 = self.make_layer(64, 64, blocks=2, stride=1)
self.layer2 = self.make_layer(64, 128, blocks=2, stride=2)
self.layer3 = self.make_layer(128, 256, blocks=2, stride=2)
self.layer4 = self.make_layer(256, 512, blocks=2, stride=2)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def make_layer(self, in_channels, out_channels, blocks, stride):
layers = []
layers.append(ResidualBlock(in_channels, out_channels, stride))
for _ in range(1, blocks):
layers.append(ResidualBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn(self.conv(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
这段代码定义了一个ResNet模型,其中包含了残差块(ResidualBlock)和整个网络结构(ResNet)。你可以根据自己的需求进行调整和使用。
阅读全文