用pytorch基于深度残差能见度检测的代码
时间: 2024-05-08 14:21:17 浏览: 94
以下是一个基于PyTorch的深度残差网络用于能见度检测的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class ResNet(nn.Module):
def __init__(self, num_classes=1):
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 3)
self.layer2 = self._make_layer(128, 4, stride=2)
self.layer3 = self._make_layer(256, 6, stride=2)
self.layer4 = self._make_layer(512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * 1 * 1, num_classes)
def _make_layer(self, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes),
)
layers = []
layers.append(Bottleneck(self.inplanes, planes, stride, downsample))
self.inplanes = planes
for _ in range(1, blocks):
layers.append(Bottleneck(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
def train(model, dataloader, criterion, optimizer, device):
model.train()
running_loss = 0.0
for i, data in enumerate(dataloader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(dataloader)
def evaluate(model, dataloader, criterion, device):
model.eval()
running_loss = 0.0
with torch.no_grad():
for i, data in enumerate(dataloader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
running_loss += loss.item()
return running_loss / len(dataloader)
def main():
# Set up device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Set up data loaders
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=32, shuffle=False)
# Set up model
model = ResNet(num_classes=1).to(device)
# Set up loss function and optimizer
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# Train and evaluate model
for epoch in range(num_epochs):
train_loss = train(model, train_loader, criterion, optimizer, device)
val_loss = evaluate(model, val_loader, criterion, device)
print(f"Epoch {epoch+1}: Train Loss = {train_loss:.4f}, Val Loss = {val_loss:.4f}")
# Save model
torch.save(model.state_dict(), "model.pth")
if __name__ == "__main__":
main()
```
在这个示例代码中,我们使用了一个ResNet网络,它被称为深度残差网络,以进行能见度检测。我们使用了MSE作为损失函数,并使用SGD作为优化器。我们在训练集上训练网络,并在验证集上评估其性能。最后,我们将训练好的模型保存到文件中。请注意,这里的代码只是一个示例,你需要根据你的具体数据集和任务进行相应的修改。
阅读全文