残差模块代码pytorch
时间: 2023-09-08 08:10:09 浏览: 128
残差模块的代码如下所示:
```python
class ResidualBlock(torch.nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.channels = channels
self.conv1 = torch.nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.conv2 = torch.nn.Conv2d(channels, channels, kernel_size=3, padding=1)
def forward(self, x):
y = F.relu(self.conv1(x))
y = self.conv2(y)
return F.relu(x + y)
```
这个代码定义了一个继承自`torch.nn.Module`的`ResidualBlock`类。在初始化函数中,它接受一个`channels`参数,用于指定输入和输出的通道数。然后,它定义了两个卷积层`conv1`和`conv2`,它们都使用3x3的卷积核和1的padding。在前向传播函数中,输入通过第一个卷积层和ReLU激活函数后,再经过第二个卷积层。最后,将输入和输出相加,并通过ReLU激活函数输出。
这个残差模块可以用于构建深度神经网络,如麦田怪圈中的网络模型。
#### 引用[.reference_title]
- *1* *2* [PyTorch实现简单的残差网络](https://blog.csdn.net/weixin_43821559/article/details/123384077)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [pytorch进行自由模型构建(以残差模块为例)](https://blog.csdn.net/weixin_44456198/article/details/127574393)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文