Res2net pytorch代码实现
时间: 2024-07-25 12:01:09 浏览: 79
pytorch:pokemon+resnet详细代码+数据集
Res2Net是一种深度残差网络的变体,通过引入二维空间内的卷积,增强了特征图的空间分辨率。在PyTorch中实现Res2Net,你需要先安装相关的库,如torch、torchvision等,并理解基本的卷积神经网络(CNN)原理。
以下是一个简单的Res2Net模块的示例代码:
```python
import torch.nn as nn
import torch.nn.functional as F
class Bottleneck(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, cardinality=32, base_width=4, scale=4):
super(Bottleneck, self).__init__()
width = int(out_channels * (base_width / 64.0)) * cardinality
self.conv1 = nn.Conv2d(in_channels, width, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(width)
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
self.bn2 = nn.BatchNorm2d(width)
self.conv3 = nn.Conv2d(width, out_channels, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
identity = x
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(identity)
out = F.relu(out)
return out
class Res2Net(nn.Module):
def __init__(self, block, layers, num_classes=1000, scale=4):
super(Res2Net, self).__init__()
self.cardinality = 32
self.base_width = 4
self.scale = scale
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self.make_layer(block, 64, layers)
self.layer2 = self.make_layer(block, 128, layers, stride=2)
self.layer3 = self.make_layer(block, 256, layers, stride=2)
self.layer4 = self.make_layer(block, 512, layers, stride=1, scale=scale)
self.avg_pool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
def make_layer(self, block, planes, blocks, stride=1, scale=None):
if scale is None:
scale = self.scale
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, self.cardinality, self.base_width, scale))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, self.cardinality, self.base_width))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avg_pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 使用示例
res2net_50_26w_4s = Res2Net(Bottleneck, [3, 4, 6, 3], scale=4)
```
这是一个基础的Res2Net结构,你可以根据实际项目需求调整模型参数。记得在实际应用前,你需要导入其他必要的库,并根据训练数据对模型进行适当的配置,如设定优化器、损失函数等。
阅读全文