给我一段resnet18处理17*1600格式数据的pytorch代码
时间: 2023-06-07 21:11:31 浏览: 159
resnet pytorch代码
可以参考以下代码实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm1d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet18(nn.Module):
def __init__(self, num_classes):
super(ResNet18, self).__init__()
self.in_channels = 17
self.conv1 = nn.Conv1d(17, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 2)
self.layer2 = self._make_layer(128, 2, stride=2)
self.layer3 = self._make_layer(256, 2, stride=2)
self.layer4 = self._make_layer(512, 2, stride=2)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Linear(512, num_classes)
def _make_layer(self, out_channels, blocks, stride=1):
layers = []
layers.append(ResBlock(self.in_channels, out_channels, stride))
self.in_channels = out_channels
for i in range(1, blocks):
layers.append(ResBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
这是一个基于PyTorch的ResNet18模型,可以处理输入数据为大小为17x1600的格式。
阅读全文