stm32 流水呼吸灯
时间: 2023-10-14 09:07:54 浏览: 317
STM32流水灯和呼吸灯的实现方式可以有多种方法。其中一种方法是使用定时器来控制流水灯的闪烁频率,利用GPIO口来控制LED灯的亮灭状态。另外,可以使用PWM信号来实现呼吸灯的效果,通过改变占空比来控制LED灯的亮度变化。
对于流水灯的实现,可以通过在定时器中断中改变GPIO的输出状态来实现灯的闪烁效果。具体的步骤如下:
1. 创建一个STM32项目并配置好定时器。
2. 在定时器中断函数中,通过改变GPIO的输出状态来控制LED灯的亮灭。
3. 根据需要设置定时器的时间间隔,以控制流水灯的闪烁频率。
对于呼吸灯的实现,可以利用PWM(脉冲宽度调制)信号来控制LED灯的亮度变化。具体的步骤如下:
1. 创建一个STM32项目并配置好PWM输出。
2. 编写代码,通过改变PWM的占空比来控制LED灯的亮度。
3. 根据需要设置PWM的占空比的变化范围和变化速度,以控制呼吸灯的效果。
相关问题
stm32流水呼吸灯
以下是使用STM32实现流水呼吸灯的步骤:
1.创建一个新的STM32项目,并在CubeMX中配置时钟RCC、定时器TIM、PWM输出管脚等。
2.在代码中初始化定时器TIM和PWM输出管脚,并设置定时器的周期和占空比。
3.使用循环结构控制PWM输出管脚的占空比,实现呼吸灯效果。
4.使用延时函数控制流水灯的移动速度。
下面是一个简单的示例代码,实现了三个LED灯的流水呼吸灯效果:
```c
#include "main.h"
#include "stm32f4xx_hal.h"
TIM_HandleTypeDef htim3;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM3_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_TIM3_Init();
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_3);
uint16_t pwm_value = 0;
uint8_t dir = 1;
while (1)
{
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_1, pwm_value);
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, pwm_value);
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_3, pwm_value);
if (dir == 1)
{
pwm_value++;
if (pwm_value >= 1000)
{
dir = 0;
}
}
else
{
pwm_value--;
if (pwm_value <= 0)
{
dir = 1;
}
}
HAL_Delay(10);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
if (HAL_PWREx_EnableOverDrive() != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
static void MX_TIM3_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
htim3.Instance = TIM3;
htim3.Init.Prescaler = 83;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 999;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0 | GPIO_PIN_1, GPIO_PIN_RESET);
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM3;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
```
stm32流水呼吸灯代码
### STM32 实现流水灯和呼吸灯效果
#### 流水灯效果实现
对于STM32F103C8T6驱动64颗WS2812灯带实现流水灯效果,此项目利用了该微控制器的强大功能来创建动态照明体验。为了达到这一目的,程序被设计成能够使三颗灯光依次移动形成连续不断的流动感,既可以从左至右也可以反方向运行[^1]。
下面是简化版的代码片段用于展示如何设置并启动这样的流水灯序列:
```c
#include "stm32f1xx_hal.h"
#include "ws2812b.h"
#define NUM_LEDS 64
void setup() {
HAL_Init();
SystemClock_Config(); // 配置系统时钟
ws2812_init(NUM_LEDS); // 初始化 WS2812B 灯条
}
void loop() {
static uint8_t direction = 1; // 方向标志位
static int position = -3;
if (position >= NUM_LEDS || position < -2) {
direction *= -1;
position += (direction * 5);
}
for(int i=0;i<NUM_LEDS;i++){
if(i>=position && i<(position+3)){
setPixelColor(i, 0xFF, 0x00, 0x00); // 设置红色光亮
}else{
setPixelColor(i, 0x00, 0x00, 0x00); // 关闭其他LEDs
}
}
showStrip(); // 显示当前状态到实际硬件上
position+=direction;
HAL_Delay(100); // 控制流速
}
```
这段代码展示了基本框架以及核心逻辑,具体细节可能依据个人需求有所不同。
#### 呼吸灯效果实现
关于全彩RGB呼吸灯效果,在STM32平台上可以通过调整PWM信号强度模拟自然渐变的过程。这里给出一段简单的例子说明怎样配置GPIO引脚作为PWM输出,并改变占空比以获得平滑过渡的颜色变化[^2]。
```c
#include "stm32f1xx_hal.h"
TIM_HandleTypeDef htim3;
// PWM初始化函数...
void MX_TIM3_PWM_Init(void){
__HAL_RCC_TIM3_CLK_ENABLE();
TIM_OC_InitTypeDef sConfigOC = {0};
htim3.Instance = TIM3;
htim3.Init.Prescaler = 79;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 999;
HAL_TIM_PWM_Init(&htim3);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim3,TIM_CHANNEL_1);
}
int main(){
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_TIM3_PWM_Init();
while (true){
for(uint16_t brightness=0;brightness<=1000;brightness++){
__HAL_TIM_SET_COMPARE(&htim3,TIM_CHANNEL_1,brightness);
HAL_Delay(1);
}
for(uint16_t brightness=1000;brightness>0;brightness--){
__HAL_TIM_SET_COMPARE(&htim3,TIM_CHANNEL_1,brightness);
HAL_Delay(1);
}
}
}
```
上述代码段中包含了定时器TIM3的PWM模式设定过程,通过不断修改比较寄存器中的值(`__HAL_TIM_SET_COMPARE`)可以控制发光二极管亮度的变化幅度,从而营造出柔和而连贯的色彩转换效果。
阅读全文
相关推荐














