进一步解释void DW_CONV_3x3(ap_uint<8> bottom[16][34][66], ap_uint<8> top[16][34][66], ap_int<8> weight[16][3][3],ap_int<16> bias[16], ap_fixed<32,1> factor) { ap_int<32> mid_result = 0; for (int co = 0; co < 16; co++) { for (int h = 1; h <= 32; h++) { for (int w = 1; w <= 64; w++) { mid_result = (weight[co][0][0] * bottom[co][h - 1][w - 1]) + (weight[co][0][1] * bottom[co][h - 1][w]) + (weight[co][0][2] * bottom[co][h - 1][w + 1]) + (weight[co][1][0] * bottom[co][h][w - 1]) + (weight[co][1][1] * bottom[co][h][w]) + (weight[co][1][2] * bottom[co][h][w + 1]) + (weight[co][2][0] * bottom[co][h + 1][w - 1]) + (weight[co][2][1] * bottom[co][h + 1][w]) + (weight[co][2][2] * bottom[co][h + 1][w + 1]); top[co][h][w] = relu(bias[co] + qunat_dequant2(mid_result, factor)); } } } }

时间: 2023-08-18 10:08:57 浏览: 38
`DW_CONV_3x3`函数是一个实现了3x3深度可分离卷积操作的函数。下面对这个函数的实现进行进一步解释: 输入参数: - `bottom`是输入特征图,具有16个通道、34行和66列的尺寸。 - `top`是输出特征图,具有16个通道、34行和66列的尺寸。 - `weight`是3x3卷积核权重矩阵,具有16个通道。该矩阵的每个通道都由一个3x3的子矩阵表示。 - `bias`是偏置矩阵,具有16个通道。 - `factor`是缩放因子,用于量化和反量化操作。 函数逻辑: - 初始化一个32位整数类型变量`mid_result`为0,用于存储卷积的中间结果。 - 使用三个嵌套循环遍历输出特征图的每个通道、每个位置的像素。 - 对于每个通道、每个位置的像素,使用3x3卷积核对输入特征图进行卷积操作,并将结果累加到`mid_result`变量中。 具体计算过程: - 对于输出特征图的每个通道、每个位置的像素,在输入特征图的相应区域进行3x3卷积计算。 - 每次计算都是将输入特征图的对应像素与卷积核的对应权重相乘,然后将乘积累加到`mid_result`中。 - 最后,将`bias`的对应通道加到`mid_result`中,然后通过调用`qunat_dequant2`函数进行量化和反量化操作。 - 最终的结果通过ReLU激活函数进行处理,并存储到输出特征图的对应位置。 总结: `DW_CONV_3x3`函数是一个实现了3x3深度可分离卷积操作的函数。它通过遍历输出特征图的每个通道和位置,使用3x3卷积核对输入特征图进行卷积操作,并将结果进行量化、反量化和ReLU激活处理后存储到输出特征图中。

相关推荐

解释图像块是什么 进一步解释 void load_image_chunk_norm( ap_uint<8> img_buf[16][34][66], ap_uint<8> * image_in_raw_pad_burst,// int raw, int col, int raw_shape, int col_shape) { ap_uint<8> * image_pad_in_pad_burst_ptr; for (int co = 0; co < 16; co++) { image_pad_in_pad_burst_ptr = image_in_raw_pad_burst + co * raw_shape * col_shape + raw * 32 * col_shape + col * 64; for (int h = 0; h < 34; h++) { for (int w = 0; w < 66; w++) { img_buf[co][h][w] = image_pad_in_pad_burst_ptr[w]; } image_pad_in_pad_burst_ptr += col_shape; } } } void Special_test1( ap_uint<8> static image_in_raw_pad[16 * 512 * 1024], ap_uint<8> static ddr_dw0_out_PL_burst[16 * 130 * 258], ap_uint<8> static ddr_dw1_out_PL_burst[16 * 130 * 258], ap_uint<8> static out_feature[16 * 128 * 256]) { ap_uint<8> static FeatureMapBuf0[16][34][66]; ap_uint<8> static FeatureMapBuf1[16][34][66]; for (int raw = 0; raw < 16; raw++) { for (int col = 0; col < 16; col++) { load_image_1x1(FeatureMapBuf0, image_in_raw_pad, raw, col, 512, 1024); conv1x1(FeatureMapBuf0, FeatureMapBuf1, weight_conv1,bias_conv1_int, q_dq_1); store_4x4_AvgPooling_debug(FeatureMapBuf1, ddr_dw0_out_PL_burst, raw, col, 130, 258); } } std::cout << "over!!!!"; for (int raw = 0; raw < 8; raw++) { for (int col = 0; col < 8; col++) { load_image_chunk_norm(FeatureMapBuf0, ddr_dw0_out_PL_burst, raw, col, 130, 258); DW_CONV_3x3(FeatureMapBuf0, FeatureMapBuf1, weight_conv3,bias_conv3_int, q_dq_3); store_3x3conv(FeatureMapBuf1, ddr_dw1_out_PL_burst, raw, col, 130, 258); } }

图像块大小是多少进一步解释 void load_image_chunk_norm( ap_uint<8> img_buf[16][34][66], ap_uint<8> * image_in_raw_pad_burst,// int raw, int col, int raw_shape, int col_shape) { ap_uint<8> * image_pad_in_pad_burst_ptr; for (int co = 0; co < 16; co++) { image_pad_in_pad_burst_ptr = image_in_raw_pad_burst + co * raw_shape * col_shape + raw * 32 * col_shape + col * 64; for (int h = 0; h < 34; h++) { for (int w = 0; w < 66; w++) { img_buf[co][h][w] = image_pad_in_pad_burst_ptr[w]; } image_pad_in_pad_burst_ptr += col_shape; } } } void Special_test1( ap_uint<8> static image_in_raw_pad[16 * 512 * 1024], ap_uint<8> static ddr_dw0_out_PL_burst[16 * 130 * 258], ap_uint<8> static ddr_dw1_out_PL_burst[16 * 130 * 258], ap_uint<8> static out_feature[16 * 128 * 256]) { ap_uint<8> static FeatureMapBuf0[16][34][66]; ap_uint<8> static FeatureMapBuf1[16][34][66]; for (int raw = 0; raw < 16; raw++) { for (int col = 0; col < 16; col++) { load_image_1x1(FeatureMapBuf0, image_in_raw_pad, raw, col, 512, 1024); conv1x1(FeatureMapBuf0, FeatureMapBuf1, weight_conv1,bias_conv1_int, q_dq_1); store_4x4_AvgPooling_debug(FeatureMapBuf1, ddr_dw0_out_PL_burst, raw, col, 130, 258); } } std::cout << "over!!!!"; for (int raw = 0; raw < 8; raw++) { for (int col = 0; col < 8; col++) { load_image_chunk_norm(FeatureMapBuf0, ddr_dw0_out_PL_burst, raw, col, 130, 258); DW_CONV_3x3(FeatureMapBuf0, FeatureMapBuf1, weight_conv3,bias_conv3_int, q_dq_3); store_3x3conv(FeatureMapBuf1, ddr_dw1_out_PL_burst, raw, col, 130, 258); } }

void conv1x1(ap_uint<8> bottom[16][34][66], ap_uint<8> top[16][34][66], ap_int<8> weight[16][16],ap_int<16> bias[16], ap_fixed<32,1> factor) { ap_int<32> mid_result = 0; for (int h = 0; h < 32; h++) { for (int w = 0; w < 64; w++) { for (int coo = 0; coo < 16; coo++) { //output channel mid_result = compute_engine_16( weight[coo][0], bottom[0][h][w], weight[coo][1], bottom[1][h][w], weight[coo][2], bottom[2][h][w], weight[coo][3], bottom[3][h][w], weight[coo][4], bottom[4][h][w], weight[coo][5], bottom[5][h][w], weight[coo][6], bottom[6][h][w], weight[coo][7], bottom[7][h][w], weight[coo][8], bottom[8][h][w], weight[coo][9], bottom[9][h][w], weight[coo][10], bottom[10][h][w], weight[coo][11], bottom[11][h][w], weight[coo][12], bottom[12][h][w], weight[coo][13], bottom[13][h][w], weight[coo][14], bottom[14][h][w], weight[coo][15], bottom[15][h][w] ); top[coo][h][w] = relu( bias[coo] + qunat_dequant2(mid_result, factor)); } } } } void DW_CONV_3x3(ap_uint<8> bottom[16][34][66], ap_uint<8> top[16][34][66], ap_int<8> weight[16][3][3],ap_int<16> bias[16], ap_fixed<32,1> factor) { ap_int<32> mid_result = 0; for (int co = 0; co < 16; co++) { for (int h = 1; h <= 32; h++) { for (int w = 1; w <= 64; w++) { mid_result = (weight[co][0][0] * bottom[co][h - 1][w - 1]) + (weight[co][0][1] * bottom[co][h - 1][w]) + (weight[co][0][2] * bottom[co][h - 1][w + 1]) + (weight[co][1][0] * bottom[co][h][w - 1]) + (weight[co][1][1] * bottom[co][h][w]) + (weight[co][1][2] * bottom[co][h][w + 1]) + (weight[co][2][0] * bottom[co][h + 1][w - 1]) + (weight[co][2][1] * bottom[co][h + 1][w]) + (weight[co][2][2] * bottom[co][h + 1][w + 1]); top[co][h][w] = relu(bias[co] + qunat_dequant2(mid_result, factor)); } } } }

最新推荐

recommend-type

Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

主要介绍了Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

关于keras.layers.Conv1D的kernel_size参数使用介绍

主要介绍了关于keras.layers.Conv1D的kernel_size参数使用介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

单片机C语言Proteus仿真实例可演奏的电子琴

单片机C语言Proteus仿真实例可演奏的电子琴提取方式是百度网盘分享地址
recommend-type

电力概预算软件.zip

电力概预算软件
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依