要求使用python语言,根据朴素贝叶斯原理,编写相应的程序,实现给定输入数据,预测是否患糖尿病,具体要求如下: (一)从CSV文件中载入数据,然后划分为训练集和测试集。 (二)提取训练数据集的属性特征,以便我们计算概率并做出预测。 (三)基于给定测试数据集和一个已提取特征的训练数据集生成预测。 (四)评估对于测试数据集的预测精度作为预测正确率。 (五)主要的核心处理功能封装称为一个类。
时间: 2023-06-14 13:07:13 浏览: 93
以下是基于朴素贝叶斯原理的糖尿病预测程序,满足你的要求,并且封装成一个类:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
class NaiveBayes:
def __init__(self, file_path):
self.data = pd.read_csv(file_path)
self.X = self.data.iloc[:, :-1]
self.y = self.data.iloc[:, -1]
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.X, self.y, test_size=0.2, random_state=42)
self.classes = np.unique(self.y_train)
self.parameters = []
def fit(self):
for i, c in enumerate(self.classes):
X_where_c = self.X_train.where(self.y_train == c)
self.parameters.append([])
for col in self.X_train.columns:
col_where_c = X_where_c[col].dropna()
mean = col_where_c.mean()
std = col_where_c.std()
self.parameters[i].append({'mean': mean, 'std': std})
def _calculate_probability(self, mean, std, x):
exponent = np.exp(-((x-mean)**2 / (2 * std**2)))
return (1 / (np.sqrt(2 * np.pi) * std)) * exponent
def _calculate_class_probability(self, sample):
probabilities = {}
for i, c in enumerate(self.classes):
probabilities[c] = 1
for j, param in enumerate(self.parameters[i]):
mean = param['mean']
std = param['std']
x = sample[j]
probabilities[c] *= self._calculate_probability(mean, std, x)
return probabilities
def predict(self, X_test):
y_pred = []
for i in range(X_test.shape[0]):
sample = X_test.iloc[i,:]
probabilities = self._calculate_class_probability(sample)
y = max(probabilities, key=probabilities.get)
y_pred.append(y)
return y_pred
def accuracy(self, y_pred):
correct = 0
for i in range(len(y_pred)):
if y_pred[i] == self.y_test.iloc[i]:
correct += 1
return correct / len(y_pred)
```
这个类的使用方法如下:
```python
nb = NaiveBayes('diabetes.csv')
nb.fit()
y_pred = nb.predict(nb.X_test)
acc = nb.accuracy(y_pred)
print("Accuracy:", acc)
```
其中,`NaiveBayes('diabetes.csv')`传入的是糖尿病数据集的CSV文件路径,`nb.fit()`用于训练模型,`nb.predict(nb.X_test)`用于预测测试集的结果,`nb.accuracy(y_pred)`用于计算预测精度。
阅读全文