X_3,X_4 = np.meshgrid(np.linspace(X[:,0].min(),X[:,1].max(),num=100),np.linspace(X[:,1].min(),X[:,1].max(),num=100))
时间: 2024-01-18 12:02:02 浏览: 91
这段代码是用于创建一个二维网格,其中 X 是一个二维数组,包含两列数据。np.linspace 函数用于在给定的范围内生成一定数量的等间距数字,这里生成了两个等间距数字序列,分别作为 X 轴和 Y 轴上的坐标。np.meshgrid 函数将这两个序列转换为两个二维数组,分别表示 X 和 Y 上的坐标网格。最终得到的 X_3 和 X_4 分别表示 X 和 Y 上的所有坐标点,用于绘制二维图形。
相关问题
def drawPlot(title,x_train,x_test,y_train,y_test): N,M=500,500 x1_min,x2_min=x_train.min() x1_max,x2_max=x_train.max() t1=np.linspace(x1_min,x1_max,N) t2=np.linspace(x2_min,x2_max,M) x1,x2=np.meshgrid(t1,t2) x_show=np.stack((x1.flat,x2.flat),axis=1) y_hat=model.predict(x_show) y_hat=y_hat.reshape(x1.shape) cm_light=mpl.colors.ListedColormap(['#F2F2C2','#E00E00','#FFFFFF']) cm_dark=mpl.colors.ListedColormap(['#FFFFFF','#000000','#CCCCCC']) plt.figure(figsize=(3,2.5),facecolor='w') plt.contour(x1,x2,y_hat,colors='k',levels=[0,1],antialiased=True,linewidths=1) plt.pcolormesh(x1,x2,y_hat,cmap=cm_light) plt.scatter(x_train[0],x_train[1],c=y_train,s=20,edgecolors='k',cmap=cm_dark,label='训练集') plt.scatter(x_test[0],x_test[1],c=y_test,s=80,marker='*',edgecolors='k',cmap=cm_dark,label='测试集') plt.xlabel('花萼长度',fontsize=9) plt.ylabel('花萼宽度',fontsize=9) plt.xlim(x1_min,x1_max) plt.ylim(x2_min,x2_max) plt.grid(b=True,ls=':',color='#606060') plt.suptitle(title,fontsize=8) plt.tight_layout(1,rect=(0,0,1,0.94)) plt.show()报错TypeError: tight_layout() takes 0 positional arguments but 1 positional argument (and 1 keyword-only argument) were given
这个错误是因为 tight_layout() 这个函数需要传入一个子图布局的矩形参数,但是在这里没有给定。你可以将代码中的 plt.tight_layout(1,rect=(0,0,1,0.94)) 修改为 plt.tight_layout(rect=(0,0,1,0.94)),这样就可以解决这个问题了。
翻译这段程序并自行赋值调用:import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x): s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class print(np.random.randn(N)) D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(Nj,N(j+1)) t = np.linspace(j3.12,(j+1)3.12,N) + np.random.randn(N)0.2 # theta r = anp.sin(4t) + np.random.randn(N)0.2 # radius X[ix] = np.c_[rnp.sin(t), rnp.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
这段程序是一个分类模型的辅助函数,包括了绘制决策边界、sigmoid函数和加载数据集的函数。具体实现如下:
```python
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
def plot_decision_boundary(model, X, y):
# 设置最小值和最大值,并给它们一些填充
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# 生成一个网格,网格中点的距离为h
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# 对整个网格预测函数值
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# 绘制轮廓和训练样本
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
def sigmoid(x):
s = 1 / (1 + np.exp(-x))
return s
def load_planar_dataset():
np.random.seed(1)
m = 400 # 样本数量
N = int(m / 2) # 每个类的样本数量
# 生成数据集
D = 2 # 特征维度
X = np.zeros((m, D)) # 特征矩阵
Y = np.zeros((m, 1), dtype='uint8') # 标签向量
a = 4 # 花的最大半径
for j in range(2):
ix = range(N*j, N*(j+1))
t = np.linspace(j*3.12, (j+1)*3.12, N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
def load_extra_datasets():
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
```
这段程序中包含了以下函数:
- `plot_decision_boundary(model, X, y)`:绘制分类模型的决策边界,其中`model`是分类模型,`X`是特征矩阵,`y`是标签向量。
- `sigmoid(x)`:实现sigmoid函数。
- `load_planar_dataset()`:加载一个二维的花瓣数据集。
- `load_extra_datasets()`:加载五个其他数据集。
阅读全文