hyperopt fmin

时间: 2024-03-15 20:42:13 浏览: 97
`hyperopt fmin`是一个超参数优化的函数,它可以用于寻找最佳的超参数组合,以最小化指定的损失函数。它使用了贝叶斯优化算法来进行参数搜索,它需要用户指定一个搜索空间以及一个损失函数。函数会在搜索空间内进行随机采样,然后通过评估损失函数来确定最佳的超参数组合。该函数是`hyperopt`模块中的一个功能,`hyperopt`是一个Python库,用于在Python中进行分布式异步优化。
相关问题

job exception: object of type 'NoneType' has no len() Traceback (most recent call last): File "./source/cross_validate.py", line 193, in <module> hyperopt(cfg, logger) File "./source/cross_validate.py", line 151, in hyperopt fmin(objective, SPACE, algo=tpe.suggest, max_evals=cfg.NUM_ITERS, verbose=False) File "C:\Anaconda3\envs\PAR\lib\site-packages\hyperopt\fmin.py", line 586, in fmin rval.exhaust() File "C:\Anaconda3\envs\PAR\lib\site-packages\hyperopt\fmin.py", line 364, in exhaust self.run(self.max_evals - n_done, block_until_done=self.asynchronous) File "C:\Anaconda3\envs\PAR\lib\site-packages\hyperopt\fmin.py", line 300, in run self.serial_evaluate() File "C:\Anaconda3\envs\PAR\lib\site-packages\hyperopt\fmin.py", line 178, in serial_evaluate result = self.domain.evaluate(spec, ctrl) File "C:\Anaconda3\envs\PAR\lib\site-packages\hyperopt\base.py", line 892, in evaluate rval = self.fn(pyll_rval) File "./source/cross_validate.py", line 130, in objective temp_model = MGraphDTA(out_dim=(len(cfg.DATA.TASK_NAME)) * 2, filter_num=32) TypeError: object of type 'NoneType' has no len()

这个错误的意思是你尝试在一个 `NoneType` 对象上使用 `len()` 函数。在你的代码中,这个错误可能是在下面这行代码中引起的: ``` temp_model = MGraphDTA(out_dim=(len(cfg.DATA.TASK_NAME)) * 2, filter_num=32) ``` 它告诉我们,`len(cfg.DATA.TASK_NAME)` 返回了 `None`,而不是一个整数值。这可能是因为 `cfg.DATA.TASK_NAME` 是一个空列表或者是一个空对象。 你可以在调用 `len()` 之前先检查一下 `cfg.DATA.TASK_NAME` 是否有值或者是否为空。例如: ``` if cfg.DATA.TASK_NAME: out_dim = len(cfg.DATA.TASK_NAME) * 2 else: out_dim = 0 temp_model = MGraphDTA(out_dim=out_dim, filter_num=32) ``` 这样,即使 `cfg.DATA.TASK_NAME` 是空的,你也可以避免这个错误。

hyperopt贝叶斯优化xgboost超参数

Hyperopt是一个Python库,用于使用贝叶斯优化算法来调整机器学习模型的超参数。下面是Hyperopt在调整XGBoost超参数时的步骤: 1. 定义参数空间:首先需要定义需要调整的超参数以及其取值范围。例如,可以使用Uniform分布来定义连续型参数的取值范围,使用qUniform分布来定义整数型参数的取值范围。 2. 定义评估函数:评估函数是用来计算模型的性能指标的,例如准确率、AUC等。在每次迭代中,Hyperopt会根据当前超参数的取值调用评估函数来计算模型的性能指标。 3. 定义搜索算法:Hyperopt支持多种搜索算法,例如随机搜索、贝叶斯优化等。在这里,我们选择使用贝叶斯优化算法。 4. 运行优化器:定义好参数空间、评估函数和搜索算法后,就可以运行Hyperopt的优化器来寻找最优超参数组合了。在每次迭代中,Hyperopt会根据当前的超参数取值计算模型的性能指标,并根据贝叶斯优化算法来更新超参数的取值,直到达到预设的最大迭代次数或收敛为止。 下面是一个使用Hyperopt优化XGBoost超参数的示例代码: ```python from hyperopt import fmin, tpe, hp from sklearn.datasets import load_boston from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split import xgboost as xgb # 加载数据集 data = load_boston() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42) # 定义参数空间 space = { 'max_depth': hp.quniform('max_depth', 3, 10, 1), 'learning_rate': hp.loguniform('learning_rate', -5, 0), 'n_estimators': hp.quniform('n_estimators', 50, 200, 1), 'min_child_weight': hp.quniform('min_child_weight', 1, 10, 1), 'subsample': hp.uniform('subsample', 0.5, 1), 'gamma': hp.uniform('gamma', 0, 1), 'colsample_bytree': hp.uniform('colsample_bytree', 0.5, 1), 'reg_alpha': hp.uniform('reg_alpha', 0, 1), 'reg_lambda': hp.uniform('reg_lambda', 0, 1), } # 定义评估函数 def objective(params): model = xgb.XGBRegressor(**params) model.fit(X_train, y_train) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) return mse # 定义搜索算法 algo = tpe.suggest # 运行优化器 best = fmin(fn=objective, space=space, algo=algo, max_evals=100) print(best) ``` 在这个示例中,我们使用Hyperopt库来优化XGBoost回归模型的超参数。我们首先加载了Boston房价数据集,并将其分成训练集和测试集。然后,我们定义了需要调整的超参数以及其取值范围,并定义了评估函数。最后,我们选择使用tpe.suggest算法来搜索最优超参数,并将最优超参数打印出来。 需要注意的是,由于贝叶斯优化算法是一种启发式算法,因此在每次运行时得到的最优超参数可能会有所不同。因此,为了确保得到的结果是稳定的,通常需要运行多次优化器并取平均值。

相关推荐

以下代码是哪出现了问题呢?为什么运行报错“subsample”:from sklearn.model_selection import cross_val_score from hyperopt import hp, fmin, tpe, Trials from xgboost import XGBRegressor as XGBR data = pd.read_csv(r"E:\exercise\synthesis\synthesis_dummy_2.csv") #验证随机森林填补缺失值方法是否有效 X = data.iloc[:,1:] y = data.iloc[:,0] # 定义超参数空间min_child_weight在0~40;num_boost_round的范围可以定到range(1,100,2);gamma在[20,100];lambda范围[1,2]; space = { 'max_depth': hp.choice('max_depth', range(1, 30)), 'n_estimators':hp.quniform("n_estimators",1,100), 'learning_rate':hp.uniform('subsample', 0.1, 1), 'min_child_weight': hp.choice('min_child_weight', range(1, 40)), 'gamma': hp.uniform('gamma', 1, 100), 'subsample': hp.uniform('subsample', 0.1, 1), 'colsample_bytree': hp.uniform('colsample_bytree', 0.1, 1) } # 定义目标函数 def hyperopt_objective(params): reg = XGBR(random_state=100, **params) scores = cross_val_score(reg, Xtrain, Ytrain, cv=5) # 五倍交叉验证 return 1 - scores.mean() # 返回平均交叉验证误差的相反数,即最小化误差 # 创建Trials对象以记录调参过程 trials = Trials() # 使用贝叶斯调参找到最优参数组合 best = fmin(hyperopt_objective, space, algo=tpe.suggest, max_evals=100, trials=trials) # 输出最优参数组合 print("Best parameters:", best) # 在最优参数组合下训练模型 best_params = space_eval(space, best) reg = XGBR(random_state=100, **best_params) reg.fit(Xtrain, Ytrain) # 在验证集上评估模型 y_pred = reg.predict(X_val) evaluation = evaluate_model(y_val, y_pred) # 自定义评估函数 print("Model evaluation:", evaluation)

以下这段代码是关于CatBoost模型的超参数调整,但里面好像不是在五倍交叉验证下做的分析,请问应该怎么加上五倍交叉验证呢?import os import time import pandas as pd from catboost import CatBoostRegressor from hyperopt import fmin, hp, partial, Trials, tpe,rand from sklearn.metrics import r2_score, mean_squared_error from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold, cross_val_score as CVS, train_test_split as TTS 自定义hyperopt的参数空间 space = {"iterations": hp.choice("iterations", range(1, 30)), "depth": hp.randint("depth", 16), "l2_leaf_reg": hp.randint("l2_leaf_reg", 222), "border_count": hp.randint("border_count", 222), 'learning_rate': hp.uniform('learning_rate', 0.001, 0.9), } data = pd.read_csv(r"E:\exercise\synthesis\synthesis_dummy_2.csv") #验证随机森林填补缺失值方法是否有效 X = data.iloc[:,1:] y = data.iloc[:,0] Xtrain,Xtest,Ytrain,Ytest = TTS(X_wrapper,y,test_size=0.2,random_state=100) def epoch_time(start_time, end_time): elapsed_secs = end_time - start_time elapsed_mins = elapsed_secs / 60 return elapsed_mins, elapsed_secs 自动化调参并训练 def cat_factory(argsDict): estimator = CatBoostRegressor(loss_function='RMSE', random_seed=22, learning_rate=argsDict['learning_rate'], iterations=argsDict['iterations'], l2_leaf_reg=argsDict['l2_leaf_reg'], border_count=argsDict['border_count'], depth=argsDict['depth'], verbose=0) estimator.fit(Xtrain, Ytrain) val_pred = estimator.predict(Xtest) mse = mean_squared_error(Ytest, val_pred) return mse

以下这段代码中的X_val、y_val是来自哪儿呢,没有看到有X和Y的对训练集和测试集的划分的代码,并且这段代码还报错”name 'space_eval' is not defined“,且Xtrain,Xtest,Ytrain,Ytest = TTS(X, y,test_size=0.2,random_state=100)只划分了训练集和测试集,验证集是在哪呢?还有一个问题是以下代码用了五倍交叉验证,所以不需要用这段代码"Xtrain,Xtest,Ytrain,Ytest = TTS(X, y,test_size=0.2,random_state=100)”来划分训练集和测试集了吗:from sklearn.model_selection import cross_val_score from hyperopt import hp, fmin, tpe, Trials from xgboost import XGBRegressor as XGBR # 定义超参数空间 space = { 'max_depth': hp.choice('max_depth', range(1, 10)), 'min_child_weight': hp.choice('min_child_weight', range(1, 10)), 'gamma': hp.choice('gamma', [0, 1, 5, 10]), 'subsample': hp.uniform('subsample', 0.5, 1), 'colsample_bytree': hp.uniform('colsample_bytree', 0.5, 1) } # 定义目标函数 def hyperopt_objective(params): reg = XGBR(random_state=100, n_estimators=22, **params) scores = cross_val_score(reg, X_train, y_train, cv=5) # 五倍交叉验证 return 1 - scores.mean() # 返回平均交叉验证误差的相反数,即最小化误差 # 创建Trials对象以记录调参过程 trials = Trials() # 使用贝叶斯调参找到最优参数组合 best = fmin(hyperopt_objective, space, algo=tpe.suggest, max_evals=100, trials=trials) # 输出最优参数组合 print("Best parameters:", best) # 在最优参数组合下训练模型 best_params = space_eval(space, best) reg = XGBR(random_state=100, n_estimators=22, **best_params) reg.fit(X_train, y_train) # 在验证集上评估模型 y_pred = reg.predict(X_val) evaluation = evaluate_model(y_val, y_pred) # 自定义评估函数 print("Model evaluation:", evaluation)

最新推荐

recommend-type

财务报表,项目费用支出明细.xlsx

工资表,财务报表,对账表,付款申请,财务报告,费用支出表 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。
recommend-type

ppap-第四版.pdf

ppap-第四版
recommend-type

铁路转辙机 ZD6 使用说明书

铁路转辙机 ZD6 使用说明书
recommend-type

H.264视频的RTP负载格式与解封装策略

"包括附加的封装-jvm specification 8" 这篇文档描述了在处理H.264视频通过RTP(实时传输协议)进行传输时的负载格式,主要关注如何有效地封装和解封装NAL单元(Network Abstraction Layer Units),并处理传输过程中的延迟和抖动问题。RFC3984是这个标准的文档编号,它规定了互联网社区的标准协议,并欢迎讨论和改进建议。 在H.264编解码器中,视频数据被分割成多个NAL单元,这些单元可以在RTP包中单独或组合打包。文档分为几个部分,详细解释了两种不同的打包方式:非交错方式和交错方式。 7.1. 非交错方式: 在非交错方式下,接收者有一个接收缓冲区来补偿传输延迟和抖动。收到的RTP包按照接收顺序存储在缓冲区中。解封装后,如果是单个NAL单元包,直接送入解码器;如果是STAP-A(Single-Time Aggregation Packet - Aggregate)或FU-A(Fragment Unit - Aggregate)包,NAL单元则按顺序或分片重组后送入解码器。值得注意的是,如果解码器支持任意分片顺序,编码的图像片可以不受接收顺序限制地传送给解码器。 7.2. 交错方式: 交错方式的主要目的是重新排序NAL单元,从传输顺序调整到解码顺序。接收者需要一个接收缓冲区(这里称为解交错缓冲区)来处理传输延迟和抖动。在这种模式下,接收者首先将包存储在缓冲区,然后按照NAL单元的解码顺序进行处理。文档建议接收者应准备好应对传输抖动,可以使用单独的缓冲区或者将解交错和传输抖动补偿功能合并到同一缓冲区。 在处理RTP负载格式时,接收者需要考虑到传输延迟的影响,例如,在开始解码和回放之前需要适当增加缓冲区内容,以确保视频流的连续性和正确同步。整个过程涉及到了RTP头的使用、NAL单元的类型和处理策略,以及适应不同应用场景(如低带宽对话、交织传输的互联网视频流和高带宽点播视频)的灵活性。 这篇文档详细阐述了H.264视频在RTP环境下的封装和解封装机制,特别是如何处理传输过程中可能出现的问题,以保证视频数据的正确解码和流畅播放。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

OpenCV滤波器在机器学习中的应用案例:图像分类和目标检测,助力机器学习模型实战

![OpenCV滤波器在机器学习中的应用案例:图像分类和目标检测,助力机器学习模型实战](https://img-blog.csdnimg.cn/dc6436530197467aa655b51b7f987348.png) # 1. OpenCV滤波器简介 OpenCV(Open Source Computer Vision Library)是一个开源计算机视觉库,提供广泛的图像处理和计算机视觉算法。其中,滤波器是OpenCV中一个重要的功能,用于对图像进行处理和增强。 滤波器通过应用数学运算来修改图像像素值,从而达到各种目的,如降噪、锐化、边缘检测和特征提取。OpenCV提供了多种滤波器类
recommend-type

qt designer 信号

Qt Designer是一个用于创建用户界面(UI)的工具,它是Qt框架的一部分,主要用于设计UI元素并生成相应的Qt源代码。在Qt Designer中,"信号"(Signal)是一种机制,用于在对象之间建立通信。当一个对象的状态发生改变(比如按钮点击、文本框内容更新等),它会发出一个信号。另一个对象可以连接到这个信号上,通过所谓的"槽"(Slot)函数做出响应。 例如,在Designer中,你可以将一个QPushButton的“clicked”信号连接到一个自定义的槽函数,当按钮被点击时,就会自动调用该槽函数执行特定的操作。这使得GUI设计模块化,并增强了应用程序的灵活性。
recommend-type

H.264 RTP负载格式:详解MIME参数与解交错缓冲管理

本资源主要关注于Java虚拟机规范(JVM Specification 8)中的部分内容,特别是与媒体编码解码相关的技术细节,特别是针对H.264视频编码的RTP负载格式。H.264是ITU-T Recommendation和ISO/IEC International Standard 14496-10中的一种高级视频编码标准,用于网络传输。 首先,描述中提到的`sprop-deint-buf-req`和`sprop-deint-buf-cap`是MIME参数,它们在SDP Offer/Answer模型中用于指定交错缓冲(deinterleaving buffer)的容量需求和推荐设置。在会话建立过程中,这些参数确保解交错缓冲区的大小足够处理视频数据,避免数据丢失或错误。接收者需要根据`sprop-deint-buf-req`来配置其缓冲区,确保满足视频流的性能要求。 接着,详细讨论了解交错过程,即接收者如何处理来自RTP会话的NAL(网络抽象层单元)单元。接收器维护两个缓冲区状态:初始缓冲和播放缓冲。当接收器初始化RTP会话后,进入初始缓冲阶段,然后开始解码并播放,采用缓冲-播放模型。接收到来的NAL单元按接收顺序存储在解交错缓冲区中,而DON(Discontinuity Occurrence Number)是基于所有接收到的NAL单元计算得出的。 函数`AbsDON`和`don_diff`在解交错过程中扮演关键角色,分别用于特定计算和差异检查。`N`是`sprop-interleaving-depth` MIME参数的值加1,表示达到一定数量的VCL NAL单元后,初始缓冲结束。 对于H.264视频的RTP承载格式,文档详细规定了RTP头部的使用,以及如何将一个或多个NALU(网络抽象层单元)封装在每个RTP包中。这种格式适用于各种场景,从低比特率的对话式视频到高比特率的视频点播,体现了其广泛的应用性。 该资源涵盖了JVM规格的媒体处理部分,特别是涉及H.264视频编码的RTP负载格式设计、缓冲管理策略以及解码操作的细节,为视频通信系统的实现者提供了重要的技术参考。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

OpenCV滤波器在图像处理中的最新进展:深度学习和人工智能技术,解锁图像处理新篇章

![OpenCV滤波器在图像处理中的最新进展:深度学习和人工智能技术,解锁图像处理新篇章](https://ucc.alicdn.com/images/user-upload-01/img_convert/0548c6a424d48a735f43b5ce71de92c8.png?x-oss-process=image/resize,s_500,m_lfit) # 1. OpenCV滤波器在图像处理中的基础理论 OpenCV(开放计算机视觉库)是一个功能强大的计算机视觉库,提供广泛的图像处理算法,包括各种滤波器。滤波器在图像处理中至关重要,用于增强图像、去除噪声和提取特征。 滤波器的工作原理