评价彩色化方法优劣模型python代码
时间: 2023-08-28 14:08:14 浏览: 95
20行Python代码实现视频字符化功能
彩色化是将黑白图像转换为彩色图像的过程,常用于修复旧照片、增强图像质量等领域。评价彩色化方法的优劣通常需要从以下几个方面考虑:
1. 色彩还原度:即彩色化后的图像与原图像的色彩相似度。可以使用结构相似性指数(SSIM)、均方误差(MSE)等指标进行评价。
2. 真实感度:即彩色化后的图像是否真实自然。可以通过人类主观评价或者使用GAN等方法进行评价。
3. 处理速度:即彩色化方法的处理速度是否快速。
以下是一份使用PyTorch实现的彩色化模型评价代码,其中包括了SSIM指标和GAN主观评价方法的实现:
```python
import torch
import torch.nn as nn
from torchvision import transforms, utils
from PIL import Image
import numpy as np
from skimage.metrics import structural_similarity as ssim
import matplotlib.pyplot as plt
class ColorizationModel(nn.Module):
def __init__(self):
super(ColorizationModel, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_features=64),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(num_features=128),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(num_features=256),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(num_features=512),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(num_features=512),
nn.ReLU(inplace=True)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(in_channels=512, out_channels=512, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(num_features=512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(num_features=256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(num_features=128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(num_features=64),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(in_channels=64, out_channels=2, kernel_size=3, stride=1, padding=1),
nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
def evaluate_ssim(img1, img2):
img1 = np.array(img1)
img2 = np.array(img2)
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
ssim_value = ssim(img1, img2, multichannel=True)
return ssim_value
def evaluate_gan(img):
# 使用GAN进行主观评价,这里略过具体实现
return gan_score
# 加载彩色化模型
model = ColorizationModel()
model.load_state_dict(torch.load('colorization_model.pth'))
# 加载测试图像
img_gray = Image.open('test_gray.jpg').convert('L')
img_gt = Image.open('test_gt.jpg')
# 预处理测试图像
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
])
img_gray_tensor = preprocess(img_gray).unsqueeze(0)
# 使用模型进行彩色化
with torch.no_grad():
img_color = model(img_gray_tensor)
# 后处理图像
img_color = img_color.squeeze(0).permute(1, 2, 0).numpy()
img_color = (img_color + 1) / 2 * 255
img_color = img_color.astype(np.uint8)
img_color = Image.fromarray(img_color)
# 计算评价指标
ssim_value = evaluate_ssim(img_gt, img_color)
gan_score = evaluate_gan(img_color)
# 可视化结果
fig, axs = plt.subplots(1, 3, figsize=(12, 4))
axs[0].imshow(img_gray, cmap='gray')
axs[0].set_title('Gray image')
axs[1].imshow(img_gt)
axs[1].set_title('Ground truth')
axs[2].imshow(img_color)
axs[2].set_title(f'Colorized image\nSSIM: {ssim_value:.4f}, GAN: {gan_score:.4f}')
plt.show()
```
这份代码可以计算测试图像的SSIM值和GAN得分,并可视化结果。但需要注意的是,只有针对具体应用场景,综合考虑以上几个方面,才能全面评价彩色化方法的优劣。
阅读全文