stm32g030c8 adc采样时间如何计算
时间: 2023-09-22 19:01:41 浏览: 167
在STM32G030C8微控制器中,ADC(模拟-数字转换器)的采样时间的计算方法如下:
首先,要确定采样时间的单位。在STM32G030C8中,采样时间的单位是ADC时钟周期(转换时钟周期的逆时钟)。
然后,要选择适当的采样时间。采样时间决定了ADC将对输入信号进行采样的时间长度。较长的采样时间可以提高精度,但也会增加转换时间。通常情况下,较短的采样时间足够满足大多数应用的需求。
接下来,需要获取ADC时钟频率。在STM32G030C8中,ADC时钟来自于APB2总线时钟。可以通过将APB2总线频率除以相应的预分频系数来获取ADC时钟频率。
然后,就可以使用下面的公式来计算采样时间:
采样时间 = 采样时间单位 × (采样时间 + 12.5个ADC周期)
其中,"采样时间单位"是ADC时钟周期的逆时钟,"采样时间"是一个12位的值,表示转换周期的长度。
最后,将计算出的采样时间设置到ADC的寄存器中,以确保采样时间被正确应用。
需要注意的是,上述公式是一种基本的计算方法,实际应用中可能还需要考虑一些其他因素,如输入信号的频率和精度要求等。因此,在具体的应用中,需要根据实际需求进行适当的调整和优化。
相关问题
stm32g030c8t6使用cubeMx读取PA5电池电量的数据并显示到串口
好的,以下是使用CubeMX读取PA5电池电量的数据并显示到串口的步骤:
1. 打开CubeMX,选择相应的芯片型号(stm32g030c8t6),创建一个新的工程。
2. 在Pinout标签页中,将PA5引脚配置为模拟输入模式(Analog)。
3. 在Configuration标签页中,选择ADC1,然后将ADC1的采样时间设置为合适的值(比如6个时钟周期)。
4. 在Code Generation标签页中,选择使用HAL库,并勾选USART2串口的使能选项。
5. 在main函数中,使用HAL库的函数初始化ADC和串口,并设置ADC的通道为PA5。
6. 在while循环中,使用HAL库的函数启动ADC转换,并等待转换完成。
7. 在转换完成后,使用HAL库的函数将读取到的电量值转换为电压值,并将电压值以字符串的形式发送到串口上。
下面是示例代码:
```c
#include "main.h"
#include "stdio.h"
#include "string.h"
ADC_HandleTypeDef hadc1;
UART_HandleTypeDef huart2;
float battery_voltage = 0.0;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART2_UART_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_ADC1_Init();
MX_USART2_UART_Init();
while (1)
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 100);
uint16_t adc_value = HAL_ADC_GetValue(&hadc1);
battery_voltage = (float)adc_value / 4096 * 3.3;
char buffer[32];
sprintf(buffer, "Battery voltage: %.2fV\r\n", battery_voltage);
HAL_UART_Transmit(&huart2, (uint8_t*)buffer, strlen(buffer), 100);
HAL_Delay(1000);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
sConfig.Channel = ADC_CHANNEL_5;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_6CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
void Error_Handler(void)
{
__disable_irq();
while (1)
{
}
}
```
这个例子会每秒钟读取一次PA5引脚的电量值,并将电量值转换为电压值(假设PA5引脚连接的是一个0-3.3V的电压信号),然后通过USART2串口发送到PC端。你可以在串口调试软件中查看电压值的变化。
使用cubeMx实现STM32G030C8T6每隔2s采集一次PA4引脚的光敏值,并通过串口打印
好的,根据你的要求,我为你提供以下 CubeMX 配置步骤和代码示例:
1. 打开 CubeMX 软件并创建一个新工程。
2. 在 Select MCU 界面搜索并选择 STM32G030C8T6。
3. 在 Pinout & Configuration 标签下,将 PA4 引脚配置为 ADC1_IN9 输入模式。
4. 在 Configuration 标签下,启用 ADC1 并将时钟频率设置为 10MHz。
5. 在 ADC1 配置窗口中,选择单通道模式并将采样周期设置为 239.5 周期(即约为 20us)。
6. 在 NVIC 配置窗口中,启用 ADC1 中断。
7. 在 Project Manager 标签下,生成代码并打开 main.c 文件。
下面是示例代码:
```c
#include "main.h"
#include "stdio.h"
/* 定义全局变量 */
ADC_HandleTypeDef hadc1;
uint32_t adc_value = 0;
/* 函数声明 */
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
int main(void)
{
HAL_Init(); // 初始化 HAL 库
SystemClock_Config(); // 配置系统时钟
MX_GPIO_Init(); // 配置 GPIO
MX_ADC1_Init(); // 配置 ADC1
while (1)
{
HAL_ADC_Start_IT(&hadc1); // 启动 ADC1 转换并开启中断
HAL_Delay(2000); // 延时 2 秒钟
}
}
/* 系统时钟配置,使用 HSI 16MHz */
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/* GPIO 初始化 */
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
/* Configure GPIO pin : PA4 */
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* ADC1 初始化 */
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
/* ADC1 Initialization */
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel */
sConfig.Channel = ADC_CHANNEL_9;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
/* 中断服务函数 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
if (hadc->Instance == ADC1)
{
adc_value = HAL_ADC_GetValue(hadc); // 获取 ADC1 转换结果
printf("ADC value: %lu\n", adc_value); // 通过串口打印 ADC 值
}
}
```
代码解析:
1. 在 main 函数中,首先调用 HAL_Init() 函数初始化 HAL 库,然后调用 SystemClock_Config() 函数配置系统时钟,调用 MX_GPIO_Init() 和 MX_ADC1_Init() 函数分别初始化 GPIO 和 ADC1。
2. 在 while 循环中,调用 HAL_ADC_Start_IT() 函数启动 ADC1 转换并开启中断,然后调用 HAL_Delay() 函数延时 2 秒钟。
3. HAL_ADC_ConvCpltCallback() 函数是 ADC1 转换完成中断的回调函数,当 ADC1 转换完成时,会自动调用该函数。在该函数中,我们通过 HAL_ADC_GetValue() 函数获取 ADC1 转换结果,并通过 printf() 函数将结果打印到串口。
注:以上代码只是一个示例,实际应用中可能需要根据具体情况进行调整和优化。
阅读全文