帮我写一个经过11卷积之后分别经过11的空洞卷积和3*3的空洞卷积的python代码
时间: 2023-03-25 11:02:30 浏览: 96
以下是经过11卷积之后分别经过11的空洞卷积和3*3的空洞卷积的Python代码:
```python
import tensorflow as tf
# 定义输入张量
input_tensor = tf.placeholder(tf.float32, [None, 224, 224, 3])
# 定义11卷积层
conv11 = tf.layers.conv2d(inputs=input_tensor, filters=64, kernel_size=[11, 11], strides=[4, 4], padding='valid', activation=tf.nn.relu)
# 定义11的空洞卷积层
dilated_conv11 = tf.layers.conv2d(inputs=conv11, filters=64, kernel_size=[11, 11], dilation_rate=[2, 2], padding='valid', activation=tf.nn.relu)
# 定义3*3的空洞卷积层
dilated_conv3 = tf.layers.conv2d(inputs=conv11, filters=64, kernel_size=[3, 3], dilation_rate=[2, 2], padding='valid', activation=tf.nn.relu)
```
希望能够帮助到您!
相关问题
帮我写一个经过1*1卷积之后分别经过1*1的空洞卷积和3*3的空洞卷积的代码
以下是经过1*1卷积之后分别经过1*1的空洞卷积和3*3的空洞卷积的代码:
```python
import tensorflow as tf
# 定义输入张量
input_tensor = tf.keras.layers.Input(shape=(None, None, 3))
# 1*1卷积层
conv1x1 = tf.keras.layers.Conv2D(filters=64, kernel_size=1, strides=1, padding='same')(input_tensor)
# 1*1空洞卷积层
dilated_conv1x1 = tf.keras.layers.Conv2D(filters=64, kernel_size=1, strides=1, padding='same', dilation_rate=2)(conv1x1)
# 3*3空洞卷积层
dilated_conv3x3 = tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=1, padding='same', dilation_rate=2)(conv1x1)
# 定义模型
model = tf.keras.models.Model(inputs=input_tensor, outputs=[dilated_conv1x1, dilated_conv3x3])
```
希望能对您有所帮助。
帮我写一个经过1*1卷积之后经过空洞卷积的代码
以下是经过1*1卷积之后经过空洞卷积的代码:
```python
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=1)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, dilation=2)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
```
希望对您有所帮助。
阅读全文