python短时傅里叶变换
时间: 2023-08-26 18:06:49 浏览: 167
STFT.rar_信号进行STFT_傅里叶变换_短傅里叶变换_短时 傅里叶_短时傅
短时傅里叶变换(Short-Time Fourier Transform,STFT)是一种时频分析方法,它将一个信号分解成一系列的窗口长度相同的小段,并对每一小段进行傅里叶变换,得到该小段在频域内的频谱,从而得到信号在时域和频域上的信息。
在Python中,可以使用scipy库中的signal模块来实现STFT。具体步骤如下:
1. 导入所需库和信号数据
```python
import numpy as np
from scipy import signal
# 生成一个示例信号
fs = 1000 #采样率
t = np.linspace(0, 1, fs, endpoint=False)
x = np.sin(2*np.pi*50*t) + np.sin(2*np.pi*120*t)
```
2. 定义窗口长度和窗口类型
```python
window = 'hann'
nperseg = 64
```
3. 进行STFT计算
```python
f, t, Zxx = signal.stft(x, fs=fs, window=window, nperseg=nperseg)
```
其中,f为频率,t为时间,Zxx为STFT结果。
4. 可视化结果
```python
import matplotlib.pyplot as plt
plt.pcolormesh(t, f, np.abs(Zxx), cmap='viridis')
plt.title('STFT Magnitude')
plt.ylabel('Frequency [Hz]')
plt.xlabel('Time [sec]')
plt.show()
```
这样就可以得到STFT的时频图像了。
阅读全文