RTK定位使用扩展卡尔曼滤波常加速度模型并在状态向量添加前一历元测站到地心距离为约束条件的Java代码
时间: 2024-03-28 20:41:19 浏览: 94
RTK定位常用的是无迹卡尔曼滤波算法,但也可以使用扩展卡尔曼滤波算法。以下是使用扩展卡尔曼滤波算法实现常加速度模型并添加前一历元测站到地心距离为约束条件的Java代码:
```java
public class ConstantAccelerationModel {
private double[] x = new double[9]; // 状态量:位置、速度、加速度
private double[][] P = new double[9][9]; // 状态协方差矩阵
private double dt; // 时间间隔
// 状态转移矩阵:F
private double[][] F = {{1, 0, 0, dt, 0, 0, 0.5 * dt * dt, 0, 0},
{0, 1, 0, 0, dt, 0, 0, 0.5 * dt * dt, 0},
{0, 0, 1, 0, 0, dt, 0, 0, 0.5 * dt * dt},
{0, 0, 0, 1, 0, 0, dt, 0, 0},
{0, 0, 0, 0, 1, 0, 0, dt, 0},
{0, 0, 0, 0, 0, 1, 0, 0, dt},
{0, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 1}};
// 系统噪声协方差矩阵:Q
private double[][] Q = {{0.01, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0.01, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0.01, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0.01, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0.01, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0.01, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0.01, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0.01, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0.01}};
// 观测矩阵:H
private double[][] H = {{1, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0, 0}};
// 观测噪声协方差矩阵:R
private double[][] R = {{1, 0, 0},
{0, 1, 0},
{0, 0, 1}};
// 扩展卡尔曼滤波器
private ExtendedKalmanFilter ekf = new ExtendedKalmanFilter(F, P, Q, H, R);
// 状态预测
public void predict() {
ekf.predict(x);
x = ekf.getState();
P = ekf.getCovariance();
}
// 状态更新
public void update(double[] z, double[] r) {
// 计算前一历元测站到地心距离的约束条件
double[] hc = new double[3];
double rho = Math.sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
hc[0] = (x[0] * x[3] + x[1] * x[4] + x[2] * x[5]) / rho;
hc[1] = (x[0] * x[4] - x[1] * x[3]) / rho;
hc[2] = (-x[0] * x[3] - x[1] * x[4] + x[2] * rho) / (rho * rho);
// 添加约束条件
ekf.addConstraint(hc, r);
// 更新状态向量
ekf.update(z);
x = ekf.getState();
P = ekf.getCovariance();
}
}
```
其中,状态量为位置、速度和加速度,时间间隔为 dt。状态转移矩阵、系统噪声协方差矩阵、观测矩阵和观测噪声协方差矩阵都是扩展卡尔曼滤波算法中的参数。ExtendedKalmanFilter 类是一个实现了扩展卡尔曼滤波算法的类,可以从 Github 上下载。
添加前一历元测站到地心距离为约束条件,可以在 ExtendedKalmanFilter 类中添加一个方法来更新状态转移矩阵 F、系统噪声协方差矩阵 Q 和观测矩阵 H,例如:
```java
public void addConstraint(double[] hc, double[] r) {
// 更新状态转移矩阵
double[][] Fhc = {{1, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0, 0},
{hc[0], hc[1], hc[2], 1, 0, 0, 0.5 * dt * dt, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0.5 * dt * dt, 0},
{0, 0, 0, 0, 0, 1, 0, 0, 0.5 * dt * dt},
{0, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 1}};
double[][] Fnew = Fhc;
// 更新系统噪声协方差矩阵
double[][] Qhc = {{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0.01 * r[1], 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0.01 * r[1], 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0.01 * r[1], 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0.01, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0.01, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0.01}};
double[][] Qnew = Qhc;
// 更新观测矩阵
double[][] Hhc = {{hc[0], hc[1], hc[2], 0, 0, 0, 0, 0, 0},
{0, 0, 0, hc[0], hc[1], hc[2], 0, 0, 0},
{0, 0, 0, 0, 0, 0, hc[0], hc[1], hc[2]}};
double[][] Hnew = Hhc;
// 更新卡尔曼滤波器
setF(Fnew);
setQ(Qnew);
setH(Hnew);
}
```
其中,hc 为前一历元测站到地心距离的约束条件,r 为约束条件的权值,即
阅读全文