写一个输入(64,3,128,128)的带CBAM、BN层和dropout层ResNet五分类网络要求效率高性能好
时间: 2024-05-15 22:19:22 浏览: 107
基于CBAM和ResNet的食物识别分类python源码.zip
5星 · 资源好评率100%
以下是一个满足要求的示例代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, Add, GlobalAveragePooling2D, Dense, Dropout
from tensorflow.keras.layers import Rescaling, Multiply, Lambda, Softmax
def cbam_block(inputs, ratio=8):
# 计算通道注意力权重
avg_pool = Lambda(lambda x: tf.reduce_mean(x, axis=[1,2], keepdims=True))(inputs)
max_pool = Lambda(lambda x: tf.reduce_max(x, axis=[1,2], keepdims=True))(inputs)
concat = tf.keras.layers.Concatenate(axis=3)([avg_pool, max_pool])
conv = Conv2D(filters=inputs.shape[-1] // ratio, kernel_size=1, strides=1, padding='same', activation='relu')(concat)
attention_map = Conv2D(filters=inputs.shape[-1], kernel_size=1, strides=1, padding='same', activation='sigmoid')(conv)
# 应用通道注意力权重
output = Multiply()([inputs, attention_map])
# 计算空间注意力权重
channel_avg_pool = Lambda(lambda x: tf.reduce_mean(x, axis=3, keepdims=True))(output)
channel_max_pool = Lambda(lambda x: tf.reduce_max(x, axis=3, keepdims=True))(output)
channel_concat = tf.keras.layers.Concatenate(axis=3)([channel_avg_pool, channel_max_pool])
channel_conv = Conv2D(filters=1, kernel_size=7, strides=1, padding='same', activation='sigmoid')(channel_concat)
# 应用空间注意力权重
output = Multiply()([output, channel_conv])
return output
def resnet_block(inputs, filters, kernel_size, strides, use_cbam=True, use_bn=True, use_dropout=True):
x = inputs
# 第一层卷积
x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding='same')(x)
if use_bn:
x = BatchNormalization()(x)
x = Activation('relu')(x)
# 第二层卷积
x = Conv2D(filters=filters, kernel_size=kernel_size, strides=1, padding='same')(x)
if use_bn:
x = BatchNormalization()(x)
if use_cbam:
x = cbam_block(x)
x = Add()([x, inputs])
x = Activation('relu')(x)
if use_dropout:
x = Dropout(0.5)(x)
return x
def build_resnet(input_shape, num_classes):
inputs = Input(shape=input_shape)
# 预处理层
x = Rescaling(scale=1./255)(inputs)
# 第一层卷积
x = Conv2D(filters=64, kernel_size=7, strides=2, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
# 池化层
x = tf.keras.layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
# 4个残差块
x = resnet_block(x, filters=64, kernel_size=3, strides=1, use_cbam=True, use_bn=True, use_dropout=True)
x = resnet_block(x, filters=64, kernel_size=3, strides=1, use_cbam=True, use_bn=True, use_dropout=True)
x = resnet_block(x, filters=64, kernel_size=3, strides=1, use_cbam=True, use_bn=True, use_dropout=True)
x = resnet_block(x, filters=64, kernel_size=3, strides=1, use_cbam=True, use_bn=True, use_dropout=True)
# 全局平均池化层
x = GlobalAveragePooling2D()(x)
# 全连接层
x = Dense(units=num_classes)(x)
# Softmax激活层
outputs = Softmax()(x)
# 创建模型
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model
```
这个模型使用了CBAM块、BN层和dropout层,并且在ResNet的基础上进行了一些修改以提高效率和性能。建议在GPU上进行训练。
阅读全文