学习susan算法实验步骤
时间: 2023-05-23 12:05:32 浏览: 77
A:
1. 安装Python和相关库
2. 准备数据集
3. 运行Susan算法实现,对图像进行边缘检测和角点检测
4. 根据需求,可对结果进行可视化展示或保存
以下是Susan算法的Python实现示例代码:
```python
import numpy as np
import cv2
# 定义Susan算法的核
susan_kernel = np.array([
[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0]
])
# 定义Susan算法的阈值
susan_threshold = 27
# 读取需要处理的图像
img = cv2.imread("image.jpg")
# 将图像转换为灰度图像
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 定义角点列表
corners = []
# 对图像进行Susan角点检测
for y in range(3, gray_img.shape[1] - 3):
for x in range(3, gray_img.shape[0] - 3):
# 先将Susan核与像素点进行融合
susan_kernel_fused = gray_img[x-2:x+3, y-2:y+3] - gray_img[x][y]
susan_kernel_fused = np.where(susan_kernel_fused <= susan_threshold, 1, 0)
# 然后计算Susan算子的值
susan_kernel_sum = np.sum(np.multiply(susan_kernel, susan_kernel_fused))
# 如果角点值大于4,则为角点
if susan_kernel_sum > 4:
corners.append((x, y))
# 对角点进行可视化展示
for corner in corners:
cv2.circle(img, corner, 2, (0, 255, 0), -1)
# 展示结果
cv2.imshow("Susan Corners", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```