SUSAN算子python实现
时间: 2023-07-11 14:46:45 浏览: 138
好的,以下是一个简单的SUSAN算子的Python实现:
```python
import cv2
import numpy as np
def susan_corner_detection(image, threshold=27):
# 定义SUSAN算子中的常量参数
mask = np.array([[1,1,1],
[1,1,1],
[1,1,1]], dtype=np.uint8)
threshold_difference = 27
max_corners = 200
radius = 3
# 对图像进行灰度化和高斯平滑
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (3,3), 0)
# 使用SUSAN算子检测角点
corners = cv2.cornerHarris(gray, 2, 3, 0.04)
corners[corners < threshold] = 0
# 使用SUSAN算子检测角点的邻域点
susan_corners = cv2.filter2D(gray, -1, mask)
susan_corners = np.logical_and(susan_corners < gray - threshold_difference, gray > threshold_difference)
susan_corners = np.sum(susan_corners, axis=2)
# 合并角点和邻域点
corners = corners * susan_corners
corners = np.array(corners)
corners = corners.astype(np.uint8)
# 获取前N个最强的角点
corner_points = []
for i in range(max_corners):
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(corners)
if max_val == 0:
break
corners[max_loc[1]-radius:max_loc[1]+radius+1, max_loc[0]-radius:max_loc[0]+radius+1] = 0
corner_points.append(max_loc)
return corner_points
```
该算法使用 OpenCV 库实现,输入参数为一幅彩色图像和一个阈值,输出为检测到的角点坐标列表。其中SUSAN算子中的常量参数可以根据需要进行调整。