dataframe取某列的类型
时间: 2023-11-18 21:06:24 浏览: 73
可以使用DataFrame的dtypes属性获取每一列的数据类型。
例如,假设有一个名为df的DataFrame,我们想要获取其中名为“age”的列的数据类型,可以使用以下代码:
```
df['age'].dtype
```
这将返回该列的数据类型,例如“int64”、“float64”、“object”等。
相关问题
dataframe取某列值为某个list中元素的行
要从DataFrame中选择某列值为特定列表中元素的行,你可以使用布尔索引。下面是一个示例:
假设你有一个名为`df`的DataFrame,其中有一列名为`column_name`。你想选择`column_name`列的值等于某个列表`values_list`中元素的行。
你可以使用以下代码实现:
```python
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'column_name': [1, 2, 3, 4, 5], 'other_column': ['a', 'b', 'c', 'd', 'e']})
# 定义要匹配的列表
values_list = [2, 4]
# 使用布尔索引选择匹配的行
selected_rows = df[df['column_name'].isin(values_list)]
print(selected_rows)
```
在上述示例中,`isin()` 方法用于检查`column_name`列的值是否在 `values_list` 列表中。然后,我们使用布尔索引 `df[condition]` 选择满足条件的行。
输出将是包含匹配行的新DataFrame。
请注意,上述示例假设`column_name`列的数据类型是可比较的(如整数、字符串等)。如果数据类型不可比较,你可能需要进行适当的类型转换或调整条件以匹配正确的行。
怎么判断dataframe中某一列的所有值 有哪些在另一个dataframe中的某一列
要判断dataframe中某一列的所有值有哪些在另一个dataframe中的某一列,可以使用`isin()`函数结合`unique()`函数。示例如下:
假设有两个dataframe:df1和df2,现在要判断df1的'col1'列的所有值有哪些在df2的'col2'列中出现过,可以使用以下代码:
```python
df1['col1'].isin(df2['col2']).unique()
```
这个代码返回的是一个布尔类型的数组,其中True表示对应的df1['col1']中的值在df2['col2']中出现过,False表示没有出现过。使用`unique()`函数可以将这个数组中的唯一值取出来,即True和False,这样就能得到df1的'col1'列中所有出现过的值。
如果想要将这些值作为一个新的dataframe返回,可以使用以下代码:
```python
pd.DataFrame(df1['col1'].isin(df2['col2']).unique(), columns=['col1'])
```
这个代码返回的是一个只有'col1'列的dataframe,其中每个值表示df1['col1']中的某个值是否在df2['col2']中出现过。
阅读全文