在.csv数据集中包括固定的房间面积,朝向,日照时长,输入室外最高温,最低温,室内温度,室内人数等数据。,在灰狼优化算法中,我们可以定义一个目标函数,例如均方根误差(RMSE),来度量预测结果与真实值之间的差异。然后使用灰狼优化算法预测模型,python代码
时间: 2023-10-01 14:11:25 浏览: 75
titaniccsv.zip_Titanic.csv_kaggle数据集_titanic训练集_train.csv_train.
5星 · 资源好评率100%
下面是使用灰狼优化算法预测模型的Python代码,其中目标函数为均方根误差(RMSE):
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 读取数据集
data = pd.read_csv("data.csv")
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data.drop(columns=["室内温度"]), data["室内温度"], test_size=0.2, random_state=42)
# 定义RMSE目标函数
def rmse(y_true, y_pred):
return np.sqrt(mean_squared_error(y_true, y_pred))
# 定义灰狼优化算法
class GreyWolfOptimizer:
def __init__(self, n_population, n_params, n_iter):
self.n_population = n_population
self.n_params = n_params
self.n_iter = n_iter
def init_population(self):
self.population = np.random.rand(self.n_population, self.n_params)
def select_alpha_beta_delta(self):
fitness = self.calculate_fitness()
sorted_idx = np.argsort(fitness)
alpha = self.population[sorted_idx[0]]
beta = self.population[sorted_idx[1]]
delta = self.population[sorted_idx[2]]
return alpha, beta, delta
def update_population(self, alpha, beta, delta):
a = 2 - 2 * np.linspace(0, 1, self.n_population)
c = 2 * np.linspace(0, 1, self.n_population)
for i in range(self.n_population):
x1 = self.population[i]
x2 = alpha - a[i] * np.abs(beta - x1)
x3 = delta - c[i] * (np.abs(x1 - delta) + np.abs(x2 - delta))
self.population[i] = (x2 + x3) / 2
def calculate_fitness(self):
y_pred = []
for i in range(self.n_population):
# 使用当前参数预测室内温度
y_pred_i = self.predict(self.population[i])
y_pred.append(y_pred_i)
# 计算RMSE作为适应度值
fitness = [rmse(y_test, y_pred_i) for y_pred_i in y_pred]
return fitness
def fit(self, predict_func):
self.predict = predict_func
self.init_population()
for i in range(self.n_iter):
alpha, beta, delta = self.select_alpha_beta_delta()
self.update_population(alpha, beta, delta)
# 返回最优参数
return self.population[np.argmin(self.calculate_fitness())]
# 定义预测函数
def predict(params):
w1, w2, w3, w4, w5, w6 = params
y_pred = w1 * X_test["房间面积"] + w2 * X_test["朝向"] + w3 * X_test["日照时长"] + w4 * X_test["输入室外最高温"] + w5 * X_test["输入室外最低温"] + w6 * X_test["室内人数"]
return y_pred
# 使用灰狼优化算法优化模型参数
n_population = 50
n_params = 6
n_iter = 100
gwo = GreyWolfOptimizer(n_population, n_params, n_iter)
best_params = gwo.fit(predict)
# 使用最优参数预测室内温度
y_pred = predict(best_params)
# 计算RMSE
print("RMSE:", rmse(y_test, y_pred))
```
阅读全文