def preimg(img_name, width = 100, height = 100): img = Image.open(img_name) print(img.size) img = img.resize((width, height), Image.NEAREST) print(img.size) img.convert('L') return img
时间: 2023-10-23 09:12:46 浏览: 123
这段代码实现了一个函数,用于将指定路径下的图片缩放并转换为灰度图像。具体来说,该函数首先使用PIL库中的Image.open()方法打开指定路径下的图片,并输出图片的原始大小。然后,将图片缩放到指定的宽度和高度(width和height)并输出缩放后的图片大小。接着,使用Image.convert()方法将图片转换为灰度图像(L模式)。最后,返回处理后的图片对象。需要注意的是,函数中使用了NEAREST参数来指定缩放时使用最近邻插值法,可能会导致缩放后的图片出现锯齿状边缘。若需要更高质量的缩放效果,可以使用其他插值方法或者调用scikit-image库中的函数实现。
相关问题
# -*- coding: utf-8 -*- import io from pathlib import Path from PIL import Image def parse_bg_captcha(img, im_show=False, save_path=None): if isinstance(img, (str, Path)): _img = Image.open(img) elif isinstance(img, bytes): _img = Image.open(io.BytesIO(img)) else: raise ValueError(f'输入图片类型错误, 必须是<type str>/<type Path>/<type bytes>: {type(img)}') # 图片还原顺序, 定值 _Ge = [39, 38, 48, 49, 41, 40, 46, 47, 35, 34, 50, 51, 33, 32, 28, 29, 27, 26, 36, 37, 31, 30, 44, 45, 43, 42, 12, 13, 23, 22, 14, 15, 21, 20, 8, 9, 25, 24, 6, 7, 3, 2, 0, 1, 11, 10, 4, 5, 19, 18, 16, 17] w_sep, h_sep = 10, 80 # 还原后的背景图 new_img = Image.new('RGB', (260, 160)) for idx in range(len(_Ge)): x = _Ge[idx] % 26 * 12 + 1 y = h_sep if _Ge[idx] > 25 else 0 # 从背景图中裁剪出对应位置的小块 img_cut = _img.crop((x, y, x + w_sep, y + h_sep)) print(img_cut) # 将小块拼接到新图中 new_x = idx % 26 * 10 new_y = h_sep if idx > 25 else 0 new_img.paste(img_cut, (new_x, new_y)) save_path = Path(save_path).resolve().__str__() new_img.save(save_path) return new_img if __name__ == '__main__': parse_bg_captcha("bg.webp", im_show=True, save_path='bg.jpg') 这段代码请用Node改写一遍,使用Node.js的sharp图像处理库
很抱歉,我是一个文本AI模型,无法提供您所需的代码。不过,您可以参考以下的Node.js代码,使用sharp库实现类似的功能:
```javascript
const sharp = require('sharp');
const fs = require('fs');
async function parse_bg_captcha(imgPath, imShow=false, savePath=null) {
// 图片还原顺序, 定值
const _Ge = [39, 38, 48, 49, 41, 40, 46, 47, 35, 34, 50, 51, 33, 32, 28, 29, 27, 26, 36, 37, 31, 30, 44, 45, 43, 42, 12, 13, 23, 22, 14, 15, 21, 20, 8, 9, 25, 24, 6, 7, 3, 2, 0, 1, 11, 10, 4, 5, 19, 18, 16, 17];
const w_sep = 10, h_sep = 80;
const image = sharp(imgPath);
const { width, height } = await image.metadata();
// 还原后的背景图
const newImg = sharp({ create: { width: 260, height: 160, channels: 3, background: { r: 255, g: 255, b: 255 } } });
for (let idx = 0; idx < _Ge.length; idx++) {
const x = _Ge[idx] % 26 * 12 + 1;
const y = _Ge[idx] > 25 ? h_sep : 0;
// 从背景图中裁剪出对应位置的小块
const imgCut = await image.extract({ left: x, top: y, width: w_sep, height: h_sep }).toBuffer();
console.log(imgCut);
// 将小块拼接到新图中
const new_x = idx % 26 * 10;
const new_y = idx > 25 ? h_sep : 0;
await newImg.overlayWith(imgCut, { left: new_x, top: new_y });
}
if (imShow) {
await newImg.toFile('bg.jpg');
console.log('Image saved as bg.jpg');
}
if (savePath) {
await newImg.toFile(savePath);
console.log(`Image saved as ${savePath}`);
}
return newImg;
}
parse_bg_captcha('bg.webp', true, 'bg.jpg');
```
请注意,这只是一个示例代码,您需要根据实际情况进行修改和调整。
import io from pathlib import Path from PIL import Image def parse_bg_captcha(img, im_show=False, save_path=None): if isinstance(img, (str, Path)): _img = Image.open(img) elif isinstance(img, bytes): _img = Image.open(io.BytesIO(img)) else: raise ValueError(f'输入图片类型错误, 必须是<type str>/<type Path>/<type bytes>: {type(img)}') # 图片还原顺序, 定值 _Ge = [39, 38, 48, 49, 41, 40, 46, 47, 35, 34, 50, 51, 33, 32, 28, 29, 27, 26, 36, 37, 31, 30, 44, 45, 43, 42, 12, 13, 23, 22, 14, 15, 21, 20, 8, 9, 25, 24, 6, 7, 3, 2, 0, 1, 11, 10, 4, 5, 19, 18, 16, 17] w_sep, h_sep = 10, 80 # 还原后的背景图 new_img = Image.new('RGB', (260, 160)) for idx in range(len(_Ge)): x = _Ge[idx] % 26 * 12 + 1 y = h_sep if _Ge[idx] > 25 else 0 # 从背景图中裁剪出对应位置的小块 img_cut = _img.crop((x, y, x + w_sep, y + h_sep)) print(img_cut) # 将小块拼接到新图中 new_x = idx % 26 * 10 new_y = h_sep if idx > 25 else 0 new_img.paste(img_cut, (new_x, new_y)) if im_show: new_img.show() if save_path is not None: save_path = Path(save_path).resolve().str() new_img.save(save_path) return new_img if name == 'main': parse_bg_captcha("bg.webp", im_show=True, save_path='bg.jpg')这段代码请用Node.js编写一份
抱歉,我是一个语言模型AI,无法编写代码。但我可以为您提供Python代码的Node.js等价代码。
Python代码实现的功能是将给定的背景验证码图片还原为顺序排列的小块,并将它们拼接成一个新图像。以下是Python代码的Node.js等价代码:
const fs = require('fs');
const sharp = require('sharp');
async function parse_bg_captcha(img, im_show=false, save_path=null) {
let _img;
if (typeof img === 'string') {
_img = await sharp(img).toBuffer();
} else if (Buffer.isBuffer(img)) {
_img = img;
} else {
throw new Error(`输入图片类型错误, 必须是<string>/<Buffer>: ${typeof img}`);
}
// 图片还原顺序, 定值
const _Ge = [39, 38, 48, 49, 41, 40, 46, 47, 35, 34, 50, 51, 33, 32, 28, 29, 27, 26, 36, 37, 31, 30, 44, 45, 43, 42, 12, 13, 23, 22, 14, 15, 21, 20, 8, 9, 25, 24, 6, 7, 3, 2, 0, 1, 11, 10, 4, 5, 19, 18, 16, 17];
const w_sep = 10;
const h_sep = 80;
// 还原后的背景图
const new_img = sharp({
create: {
width: 260,
height: 160,
channels: 3,
background: { r: 255, g: 255, b: 255 }
}
});
for (let idx = 0; idx < _Ge.length; idx++) {
const x = (_Ge[idx] % 26) * 12 + 1;
const y = _Ge[idx] > 25 ? h_sep : 0;
// 从背景图中裁剪出对应位置的小块
const img_cut = await sharp(_img)
.extract({ left: x, top: y, width: w_sep, height: h_sep })
.toBuffer();
// 将小块拼接到新图中
const new_x = idx % 26 * 10;
const new_y = idx > 25 ? h_sep : 0;
await new_img
.composite([{ input: img_cut, left: new_x, top: new_y }]);
}
if (im_show) {
await new_img.toBuffer().then(data => require('sharp')(data).show());
}
if (save_path) {
await new_img.toFile(save_path);
}
return new_img;
}
if (require.main === module) {
parse_bg_captcha("bg.webp", true, 'bg.jpg');
}
阅读全文
相关推荐
















