adaboost模型python实现
时间: 2023-09-09 10:12:07 浏览: 98
以下是使用Python实现Adaboost模型的基本步骤:
1. 导入必要的库
```python
import numpy as np
from sklearn.tree import DecisionTreeClassifier
```
2. 定义Adaboost分类器类
```python
class Adaboost:
def __init__(self, n_estimators=50, learning_rate=1.0):
self.n_estimators = n_estimators
self.learning_rate = learning_rate
self.estimators = []
self.weights = []
```
3. 定义训练方法
```python
def fit(self, X, y):
n_samples, n_features = X.shape
# 初始化权重
weights = np.full(n_samples, (1 / n_samples))
for i in range(self.n_estimators):
# 创建决策树分类器
tree = DecisionTreeClassifier(max_depth=1)
# 使用加权数据拟合分类器
tree.fit(X, y, sample_weight=weights)
# 预测数据
predictions = tree.predict(X)
# 计算错误率
error = np.sum(weights * (predictions != y))
# 计算分类器权重
alpha = self.learning_rate * (np.log((1 - error) / error))
# 更新权重
weights *= np.exp(alpha * (predictions != y))
# 标准化权重
weights /= np.sum(weights)
# 保存分类器和权重
self.estimators.append(tree)
self.weights.append(alpha)
```
4. 定义预测方法
```python
def predict(self, X):
# 计算每个分类器的预测值
predictions = np.array([estimator.predict(X) for estimator in self.estimators]).T
# 计算权重加权的预测值
weighted_predictions = np.dot(predictions, self.weights)
# 返回预测结果
return np.where(weighted_predictions > 0, 1, -1)
```
完整代码如下:
```python
import numpy as np
from sklearn.tree import DecisionTreeClassifier
class Adaboost:
def __init__(self, n_estimators=50, learning_rate=1.0):
self.n_estimators = n_estimators
self.learning_rate = learning_rate
self.estimators = []
self.weights = []
def fit(self, X, y):
n_samples, n_features = X.shape
# 初始化权重
weights = np.full(n_samples, (1 / n_samples))
for i in range(self.n_estimators):
# 创建决策树分类器
tree = DecisionTreeClassifier(max_depth=1)
# 使用加权数据拟合分类器
tree.fit(X, y, sample_weight=weights)
# 预测数据
predictions = tree.predict(X)
# 计算错误率
error = np.sum(weights * (predictions != y))
# 计算分类器权重
alpha = self.learning_rate * (np.log((1 - error) / error))
# 更新权重
weights *= np.exp(alpha * (predictions != y))
# 标准化权重
weights /= np.sum(weights)
# 保存分类器和权重
self.estimators.append(tree)
self.weights.append(alpha)
def predict(self, X):
# 计算每个分类器的预测值
predictions = np.array([estimator.predict(X) for estimator in self.estimators]).T
# 计算权重加权的预测值
weighted_predictions = np.dot(predictions, self.weights)
# 返回预测结果
return np.where(weighted_predictions > 0, 1, -1)
```
使用方法如下:
```python
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据集
data = load_breast_cancer()
X = data.data
y = data.target
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建Adaboost分类器
clf = Adaboost(n_estimators=100, learning_rate=1.0)
# 训练模型
clf.fit(X_train, y_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
阅读全文