adaboost用python实现
时间: 2023-09-09 09:12:01 浏览: 143
以下是adaboost的Python实现示例代码:
```
import numpy as np
class AdaBoost:
def __init__(self, n_estimators=50):
self.n_estimators = n_estimators
self.estimators = []
self.alphas = []
def fit(self, X, y):
n_samples, n_features = X.shape
w = np.full(n_samples, (1 / n_samples))
for i in range(self.n_estimators):
clf = DecisionTreeClassifier(max_depth=1)
clf.fit(X, y)
y_pred = clf.predict(X)
misclassified = [int(y_pred[j] != y[j]) for j in range(n_samples)]
error = np.dot(w, misclassified)
alpha = 0.5 * np.log((1 - error) / error)
w = np.multiply(w, np.exp([alpha * x for x in misclassified]))
w = w / sum(w)
self.estimators.append(clf)
self.alphas.append(alpha)
def predict(self, X):
n_samples = X.shape[0]
y_pred = np.zeros((n_samples, 1))
for i, clf in enumerate(self.estimators):
predictions = clf.predict(X)
y_pred += self.alphas[i] * np.reshape(predictions, (n_samples, 1))
y_pred = np.sign(y_pred)
return y_pred
```
在此示例代码中,我们使用了Python中的numpy和scikit-learn库。我们首先定义了AdaBoost类,其中n_estimators是弱学习器的数量,estimators是已经拟合的弱学习器的列表,alphas是每个弱学习器的权重。我们在fit方法中拟合AdaBoost模型,使用DecisionTreeClassifier作为基本学习器,max_depth设置为1以保证其为弱学习器。我们计算误差和权重,然后将该弱学习器和其权重添加到列表中。在predict方法中,我们使用已拟合的所有弱学习器的加权和来进行分类预测,并返回预测结果。
阅读全文