用Java多线程实现2.三个进程P1、P2、P3使用包含N个单元的缓冲区,P1每次用Produce()生成一个正整数并用put()送入缓冲区的某个空单元;P2每次用getodd()从该缓冲区中取出一个奇数并用countodd()统计奇数个数;P3每次用geteven()从缓冲区中取出偶数并用counteven()统计偶数个数,请用信号量实现三个进程的同步与互斥活动。

时间: 2024-03-14 19:47:17 浏览: 24
以下是一个可能的Java多线程实现方案: ```java import java.util.concurrent.Semaphore; public class ProducerConsumer { private static final int N = 10; // 缓冲区大小 private static Semaphore mutex = new Semaphore(1); // 用于互斥操作缓冲区 private static Semaphore empty = new Semaphore(N); // 用于追踪缓冲区空位数量 private static Semaphore full = new Semaphore(0); // 用于追踪缓冲区已有元素数量 private static Semaphore countOdd = new Semaphore(1); // 用于互斥操作奇数计数器 private static Semaphore countEven = new Semaphore(1); // 用于互斥操作偶数计数器 private static Integer[] buffer = new Integer[N]; // 缓冲区 private static int oddCount = 0; // 奇数计数器 private static int evenCount = 0; // 偶数计数器 public static void main(String[] args) { Thread producerThread = new Thread(new Producer()); Thread consumerOddThread = new Thread(new ConsumerOdd()); Thread consumerEvenThread = new Thread(new ConsumerEven()); producerThread.start(); consumerOddThread.start(); consumerEvenThread.start(); } static class Producer implements Runnable { @Override public void run() { while (true) { Integer item = Produce(); // 生产一个元素 try { empty.acquire(); // 等待缓冲区有空位 mutex.acquire(); // 互斥操作缓冲区 int index = getNextAvailableIndex(); // 找到下一个空位 buffer[index] = item; // 放入元素 mutex.release(); // 释放缓冲区 full.release(); // 增加缓冲区中元素数量 } catch (InterruptedException e) { e.printStackTrace(); } } } } static class ConsumerOdd implements Runnable { @Override public void run() { while (true) { try { full.acquire(); // 等待缓冲区有元素 mutex.acquire(); // 互斥操作缓冲区 int index = getNextAvailableIndex(true); // 找到下一个奇数 int item = buffer[index]; buffer[index] = null; mutex.release(); // 释放缓冲区 empty.release(); // 增加缓冲区空位数量 countOdd.acquire(); // 互斥操作奇数计数器 oddCount++; countOdd.release(); } catch (InterruptedException e) { e.printStackTrace(); } } } } static class ConsumerEven implements Runnable { @Override public void run() { while (true) { try { full.acquire(); // 等待缓冲区有元素 mutex.acquire(); // 互斥操作缓冲区 int index = getNextAvailableIndex(false); // 找到下一个偶数 int item = buffer[index]; buffer[index] = null; mutex.release(); // 释放缓冲区 empty.release(); // 增加缓冲区空位数量 countEven.acquire(); // 互斥操作偶数计数器 evenCount++; countEven.release(); } catch (InterruptedException e) { e.printStackTrace(); } } } } /** * 获取下一个可用的缓冲区索引 * @return 下一个可用的缓冲区索引 */ private static int getNextAvailableIndex() { return getNextAvailableIndex(false); } /** * 获取下一个可用的缓冲区索引 * @param isOdd 是否为奇数 * @return 下一个可用的缓冲区索引 */ private static int getNextAvailableIndex(boolean isOdd) { for (int i = 0; i < buffer.length; i++) { Integer item = buffer[i]; if (item != null && item % 2 == (isOdd ? 1 : 0)) { return i; } } return -1; } /** * 生成一个正整数 * @return 生成的正整数 */ private static Integer Produce() { return (int) (Math.random() * 100) + 1; } } ``` 在以上代码中,我们使用了三个线程来模拟生产者和两个消费者。生产者不断生产元素,并将它们放入缓冲区中。两个消费者不断从缓冲区中取出元素,如果该元素是奇数,则奇数计数器加一;如果该元素是偶数,则偶数计数器加一。使用信号量可以保证缓冲区的同步和互斥操作,同时也能保证计数器的同步和互斥操作。

相关推荐

最新推荐

recommend-type

java使用CountDownLatch等待多线程全部执行完成

Java 使用 CountDownLatch 等待多线程全部执行完成 CountDownLatch 是 Java 中的...CountDownLatch 是 Java 中一个非常强大且灵活的同步工具类,使用它可以轻松地实现多线程的同步操作,提高程序的执行效率和可靠性。
recommend-type

C++_p2p实现多线程文件传输.doc

C++_p2p实现多线程文件传输.docC++_p2p实现多线程文件传输.docC++_p2p实现多线程文件传输.docC++_p2p实现多线程文件传输.docC++_p2p实现多线程文件传输.docC++_p2p实现多线程文件传输.docC++_p2p实现多线程文件传输....
recommend-type

Java实现的两个线程同时运行案例

Java多线程编程实现两个线程同时运行案例 Java多线程编程是Java编程中的一种重要技术,用于实现多任务并发执行,提高程序的执行效率和响应速度。在本文中,我们将介绍如何使用Java实现两个线程同时运行的案例,涉及...
recommend-type

浅谈Java多线程处理中Future的妙用(附源码)

"浅谈Java多线程处理中Future的妙用" 在Java多线程处理中,Future是一个非常重要的概念,它可以帮助我们更好地处理并发任务。Future是一个未来对象,里面保存着线程处理结果,它像一个提货凭证,拿着它你可以随时去...
recommend-type

Java创建多线程异步执行实现代码解析

Java多线程异步执行实现代码解析 Java语言中提供了多种方式来实现多线程异步执行,包括实现Runnable接口和继承Thread类两种方式。下面将对这两种方式进行详细的介绍和解析。 实现Runnable接口 实现Runnable接口是...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。