构建mlp多层感知模型
时间: 2023-09-01 16:13:01 浏览: 93
基于Pytorch实现多层感知机(MLP)模型用于MNIST手写数字识别
以下是构建MLP多层感知模型的步骤:
1. 导入所需的库和数据集。
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense
dataset = pd.read_csv('data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
```
2. 将数据集分为训练集和测试集,并进行特征缩放。
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```
3. 构建多层感知器模型。
```python
model = Sequential()
model.add(Dense(units=6, activation='relu', input_dim=11))
model.add(Dense(units=6, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))
```
这里使用了3个全连接层,第一个隐藏层和第二个隐藏层都有6个神经元。输入层有11个特征,输出层只有1个神经元,使用sigmoid激活函数。
4. 编译模型。
```python
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```
使用adam优化器和二元交叉熵损失函数进行编译,同时计算模型的准确率。
5. 训练模型。
```python
model.fit(X_train, y_train, batch_size=32, epochs=100)
```
这里使用32个样本的批处理大小和100个时期进行训练。
6. 评估模型。
```python
_, accuracy = model.evaluate(X_test, y_test)
print('Accuracy: %.2f' % (accuracy*100))
```
使用测试集对模型进行评估,输出模型的准确率。
完整的代码如下:
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense
dataset = pd.read_csv('data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
model = Sequential()
model.add(Dense(units=6, activation='relu', input_dim=11))
model.add(Dense(units=6, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, batch_size=32, epochs=100)
_, accuracy = model.evaluate(X_test, y_test)
print('Accuracy: %.2f' % (accuracy*100))
```
阅读全文