基于python写一个多层感知机回归预测污水处理厂出水总磷的代码,并优化模型调整多层感知机模型结构,获得最优超参数,表现最好的MLP结构
时间: 2024-03-27 09:40:47 浏览: 76
好的,我可以帮你解决这个问题。首先,我们需要导入必要的库:numpy、pandas、sklearn和keras。
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.wrappers.scikit_learn import KerasRegressor
```
然后,我们需要加载数据。假设数据集的文件名为"data.csv",其中包含用于预测总磷的特征和标签。我们可以使用pandas库中的read_csv函数来读取数据:
```python
dataset = pd.read_csv("data.csv")
X = dataset.iloc[:, 0:8].values
y = dataset.iloc[:, 8].values
```
接下来,我们需要对数据进行预处理,将其分为训练集和测试集,并对特征进行标准化处理:
```python
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```
然后,我们需要定义一个函数来创建多层感知机模型:
```python
def create_model(optimizer='adam', dropout_rate=0.0, neurons=1):
model = Sequential()
model.add(Dense(units=neurons, kernel_initializer='normal', activation='relu', input_dim=8))
model.add(Dropout(dropout_rate))
model.add(Dense(units=neurons, kernel_initializer='normal', activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(units=1, kernel_initializer='normal'))
model.compile(loss='mean_squared_error', optimizer=optimizer)
return model
```
这个函数会返回一个多层感知机模型,其中包含两个隐藏层,每个隐藏层有一个dropout层。我们还可以使用GridSearchCV来搜索最优的超参数:
```python
model = KerasRegressor(build_fn=create_model, verbose=0)
# define the grid search parameters
batch_size = [10, 20, 40, 60, 80, 100]
epochs = [10, 50, 100]
neurons = [1, 5, 10, 15, 20]
optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']
dropout_rate = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
param_grid = dict(batch_size=batch_size, epochs=epochs, optimizer=optimizer, dropout_rate=dropout_rate, neurons=neurons)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X_train, y_train)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
```
最后,我们可以使用最优的超参数来构建最终的多层感知机模型:
```python
model = Sequential()
model.add(Dense(units=grid_result.best_params_['neurons'], kernel_initializer='normal', activation='relu', input_dim=8))
model.add(Dropout(grid_result.best_params_['dropout_rate']))
model.add(Dense(units=grid_result.best_params_['neurons'], kernel_initializer='normal', activation='relu'))
model.add(Dropout(grid_result.best_params_['dropout_rate']))
model.add(Dense(units=1, kernel_initializer='normal'))
model.compile(loss='mean_squared_error', optimizer=grid_result.best_params_['optimizer'])
model.fit(X_train, y_train, batch_size=grid_result.best_params_['batch_size'], epochs=grid_result.best_params_['epochs'], verbose=0)
```
这样,我们就可以得到一个优化的多层感知机模型,可以用于预测污水处理厂出水总磷。
阅读全文