在python中读取三个厂区(A、B、C)整年数据,任选一项数据(进/出水——COD、氨氮、总磷、总氮),并将其分别各自划分为四个季节,最终绘制四副某项数据四季三厂趋势对比图(需使用四种不同图表)。
时间: 2024-03-22 22:42:20 浏览: 55
一维CNN处理序列数据,cnn处理时间序列,Python
5星 · 资源好评率100%
好的,这是一个数据处理和可视化的问题,我会尽力回答。
首先,您需要使用Python读取三个厂区的数据。我假设这些数据已经以某种格式存储在您的本地计算机上。您可以使用pandas库来读取和处理数据。例如,您可以使用以下代码读取一个名为“data.csv”的数据文件:
```python
import pandas as pd
data = pd.read_csv('data.csv')
```
接下来,您需要选择一个数据项和季节来进行分析。假设您选择了A厂区的COD进水数据,并将其分为春、夏、秋、冬四个季节。您可以使用pandas库的resample()方法来实现这个目标。以下是一个示例代码:
```python
# 选择A厂区的COD进水数据
data_A_cod_in = data[data['factory'] == 'A'][['date', 'cod_in']]
# 将数据按月份重采样
data_A_cod_in.index = pd.to_datetime(data_A_cod_in['date'])
data_A_cod_in_monthly = data_A_cod_in.resample('M').mean()
# 将数据按季度重采样
data_A_cod_in_quarterly = data_A_cod_in_monthly.resample('Q').mean()
# 将数据按季节分组
seasons = ['winter', 'spring', 'summer', 'autumn']
data_A_cod_in_seasonal = {}
for i in range(4):
start_month = i * 3 + 1
end_month = (i + 1) * 3
season_data = data_A_cod_in_quarterly[(data_A_cod_in_quarterly.index.month >= start_month) & (data_A_cod_in_quarterly.index.month <= end_month)]
season_name = seasons[i]
data_A_cod_in_seasonal[season_name] = season_data
```
现在,您已经将A厂区的COD进水数据分为了四个季节。接下来,您需要绘制四种不同的图表来展示数据。我会为您提供四个示例代码,分别绘制线图、柱状图、面积图和散点图。
线图:
```python
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
for season_name in seasons:
ax.plot(data_A_cod_in_seasonal[season_name]['cod_in'], label=season_name)
ax.set_xlabel('Quarter')
ax.set_ylabel('COD in (mg/L)')
ax.set_title('COD in (mg/L) of A Factory in Four Seasons')
ax.legend()
plt.show()
```
柱状图:
```python
fig, ax = plt.subplots()
for season_name in seasons:
ax.bar(season_name, data_A_cod_in_seasonal[season_name]['cod_in'], label=season_name)
ax.set_xlabel('Quarter')
ax.set_ylabel('COD in (mg/L)')
ax.set_title('COD in (mg/L) of A Factory in Four Seasons')
ax.legend()
plt.show()
```
面积图:
```python
fig, ax = plt.subplots()
for season_name in seasons:
ax.fill_between(data_A_cod_in_seasonal[season_name].index, data_A_cod_in_seasonal[season_name]['cod_in'], label=season_name)
ax.set_xlabel('Quarter')
ax.set_ylabel('COD in (mg/L)')
ax.set_title('COD in (mg/L) of A Factory in Four Seasons')
ax.legend()
plt.show()
```
散点图:
```python
fig, ax = plt.subplots()
for season_name in seasons:
ax.scatter(data_A_cod_in_seasonal[season_name].index, data_A_cod_in_seasonal[season_name]['cod_in'], label=season_name)
ax.set_xlabel('Quarter')
ax.set_ylabel('COD in (mg/L)')
ax.set_title('COD in (mg/L) of A Factory in Four Seasons')
ax.legend()
plt.show()
```
以上代码只是一个示例,您可以根据自己的需求进行修改和扩展。当然,您还需要将这些代码整合在一起,绘制出四副趋势对比图。祝您成功!
阅读全文