matlab使用softmax归一化
时间: 2023-08-23 17:11:12 浏览: 136
在Matlab中使用softmax归一化可以通过以下步骤实现。首先,导入鸢尾花数据集并将其分为输入特征x和目标变量y的向量表示。然后,使用mysoftmax函数来计算softmax参数theta和算法准确率accuracy。具体代码如下所示:
```
load fisheriris; % 导入鸢尾花数据集
x = meas; % 输入特征
y(1:50,1) = 1; % 目标变量
y(51:100,1) = 2;
y(101:150,1) = 3;
k = 3; % 类别数
alpha = 0.01; % 学习率
\[theta, accuracy\] = mysoftmax(x, y, k, alpha); % 调用mysoftmax函数计算softmax参数和准确率
```
这样,你就可以在Matlab中使用softmax归一化了。\[1\]
#### 引用[.reference_title]
- *1* [softmax求解多分类问题的matlab实现](https://blog.csdn.net/weixin_43244928/article/details/106629090)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [理解:回归与拟合、归一化与标准化](https://blog.csdn.net/ckzhb/article/details/77962003)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [关于Softmax函数](https://blog.csdn.net/wangheng673/article/details/84339131)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文