ValueError: empty group <argparse._MutuallyExclusiveGroup object at 0x00000277889546D0>
时间: 2024-09-24 10:05:53 浏览: 97
这个错误提示通常出现在Python的argparse模块中,当你尝试处理命令行选项时,如果用户没有选择argparse中的互斥组(argparse._MutuallyExclusiveGroup)中的任何一个选项,就会抛出ValueError: empty group。argparse的互斥组是指一组选项必须至少选择其中一个,如果你的程序中设置了这样的约束,而用户没有提供满足条件的选择,就会报这个错。
例如,你可能有这样的代码结构:
```python
group = argparse.ArgumentParser().add_mutually_exclusive_group()
group.add_argument('--option1')
group.add_argument('--option2')
args = parser.parse_args()
```
在这种情况下,如果用户运行`python script.py`而没有指定`--option1`或`--option2`,就会触发这个错误。
解决办法是在解析命令行参数之前检查args.group是否为空,或者添加一个默认值或者帮助信息指导用户如何选择。
相关问题
ValueError: <docx.text.paragraph.Paragraph object at 0x0000019B8A4338E0> is not in list
This error usually occurs when you are trying to access an element from a list that doesn't exist in the list. In this case, the error message is indicating that the object <docx.text.paragraph.Paragraph object at 0x0000019B8A4338E0> is not present in the list you are trying to access it from.
To resolve this error, you need to make sure that you are accessing the correct list and that the element you are trying to access actually exists in that list. You can try printing out the list and the element you are trying to access to verify that they match.
If you are still having trouble, you can also try debugging your code by adding print statements or using a debugger to step through your code and see where the error is occurring.
尝试从一个字典列表创建一个 Stock 实例列表,然后计算总成本: >>> import fileparse >>> with open('Data/portfolio.csv') as lines: ... portdicts = fileparse.parse_csv(lines, select= ['name','shares','price'], types=[str,int,float]) ... >>> portfolio = [ stock.Stock(d['name'], d['shares'], d['price']) for d in portdicts] >>> portfolio [<stock.Stock object at 0x10c9e2128>, <stock.Stock object at 0x10c9e2048>, <stock.Stock object at 0x10c9e2080>, <stock.Stock object at 0x10c9e25f8>, <stock.Stock object at 0x10c9e2630>, <stock.Stock object at 0x10ca6f748>, <stock.Stock object at 0x10ca6f7b8>] >>> sum([s.cost() for s in portfolio]) 44671.15。写fileparse.py
好的,以下是一个简单的fileparse模块的示例代码,用于解析CSV格式的文件:
```python
import csv
import os
def parse_csv(lines, select=None, types=None, has_headers=True, delimiter=',', silence_errors=False):
rows = csv.reader(lines, delimiter=delimiter)
# 读取列头
headers = []
if has_headers:
try:
headers = next(rows)
except csv.Error as e:
if not silence_errors:
print(f"Error reading headers: {e}")
# 如果有指定列,则仅保留指定的列
if select and headers:
indices = [headers.index(colname) for colname in select]
headers = select
else:
indices = []
# 如果指定了类型,则将指定列转换为指定类型
if types:
types = [str] * len(headers) if not types else types
try:
rows = [[func(val) for func, val in zip(types, row)] for row in rows]
except ValueError as e:
if not silence_errors:
print(f"Error parsing row: {e}")
return None
# 组合每一行的数据
records = []
for row in rows:
if not row:
continue
if indices:
row = [row[index] for index in indices]
if has_headers:
record = dict(zip(headers, row))
else:
record = tuple(row)
records.append(record)
return records
```
这个模块可以解析CSV格式的文件,并将每一行的数据组合成一个字典或者元组。接下来可以用这个模块来解析投资组合的CSV文件,然后创建Stock实例列表,并计算总成本。
阅读全文