def power(x,n=2) x,n=map(int,input().split

时间: 2024-06-04 10:06:31 浏览: 146
这段代码有语法错误,缺少一个冒号和一个函数体。如果你想问这段代码的作用,我可以解释一下: 这是一个定义函数的代码,函数名为power,函数有两个参数x和n,其中n的默认值为2。函数体应该是在冒号后面的一段代码,但是这里缺少了冒号和函数体。在函数体中,应该会有一些计算操作,用于计算x的n次方。而在函数定义的最后,通过map函数和input函数获取到了两个输入值,将它们转换为整型,并分别赋值给了x和n。
相关问题

采用递归方法计算x的n次方。 **输入格式要求:"%d%d" 提示信息:"x=? n=?" **输出格式要求:"%d**%d=%d\n" 程序运行示例如下: x=? n=?2 8 2**8=256

以下是实现该功能的代码: ```python def power(x, n): if n == 0: return 1 elif n % 2 == 0: return power(x*x, n/2) else: return x*power(x, n-1) x, n = map(int, input("x=? n=?").split()) result = power(x, n) print("%d**%d=%d" % (x, n, result)) ``` 运行示例: ``` x=? n=?2 8 2**8=256 ```

请设计算法,求解上述问题。用结构化程序设计方法编程验证算法的正确性。 输入格式: 每行输入一个实数x和一个整数n,分别对应题目描述中的x和n,当x=0时候输入结束。输入数据之间由一个空格分隔。 输出格式: 每行输出为一个数,表示对应输入的计算结果。 样例输入: 2.00000 10 2.10000 3 2.00000 -2 0 0 样例输出: 1024.00000 9.26100 0.25000

根据题目描述,我们需要计算 $x^n$ 的值。我们可以使用分治算法来求解,将 $n$ 分解为两个较小的整数,递归求解,直到 $n=1$ 或 $n=0$,此时返回 $x^n$ 或 $1$。如果 $n$ 是负数,可以先计算 $x^{-n}$ 再取倒数。 具体算法如下: 1. 如果 $n=0$,返回 $1$。 2. 如果 $n=1$,返回 $x$。 3. 如果 $n<0$,返回 $1/power(x,-n)$。 4. 如果 $n$ 是偶数,返回 $power(x,n/2) * power(x,n/2)$。 5. 如果 $n$ 是奇数,返回 $x * power(x,n-1)$。 其中,$power(x,n)$ 表示计算 $x^n$ 的值。 下面是结构化程序设计方法的伪代码实现: ``` function power(x, n) if n == 0 then return 1 else if n == 1 then return x else if n < 0 then return 1 / power(x, -n) else if n is even then return power(x, n/2) * power(x, n/2) else return x * power(x, n-1) end if end function repeat read x, n if x == 0 then exit repeat end if print power(x, n) until false ``` 接下来是完整的 Python 代码实现: ```python def power(x, n): if n == 0: return 1 elif n == 1: return x elif n < 0: return 1 / power(x, -n) elif n % 2 == 0: return power(x, n//2) * power(x, n//2) else: return x * power(x, n-1) while True: x, n = map(float, input().split()) if x == 0: break print("{:.5f}".format(power(x, int(n)))) ``` 注意,为了避免计算结果过长,我们在输出时只保留小数点后五位。
阅读全文

相关推荐

最新推荐

recommend-type

tensorflow 2.0模式下训练的模型转成 tf1.x 版本的pb模型实例

在TensorFlow 2.0中,模型训练变得更加方便和高效,但有时为了兼容旧系统或者利用TensorFlow 1.x的一些特性,我们需要将2.0版本训练的模型转换为1.x版本的.pb模型。这里我们将详细讲解如何实现这个过程,特别关注在...
recommend-type

在Python3.74+PyCharm2020.1 x64中安装使用Kivy的详细教程

在Python3.74+PyCharm2020.1 x64环境中安装和使用Kivy是一个重要的步骤,特别是对于那些希望构建跨平台图形用户界面应用的开发者来说。Kivy是一个强大的开源库,它允许程序员用Python语言快速地开发交互式应用,支持...
recommend-type

Python实现读取文件最后n行的方法

def get_last_line(inputfile): # 获取文件大小 filesize = os.path.getsize(inputfile) # 定义块大小 blocksize = 1024 # 打开文件 dat_file = open(inputfile, 'r') # 初始化变量 last_line = "" lines...
recommend-type

python递归计算N!的方法

def factorial(n): if n == 0: return 1 else: return n * factorial(n - 1) ``` 这个函数的核心在于它的递归结构。当调用`factorial(n)`时,函数首先检查基本情况:如果n等于0,那么返回1,因为0的阶乘定义为1...
recommend-type

MingW VC 之.a .lib .dll .def 关系

MingW VC 之.a .lib .dll .def 关系主要涉及的是在Windows环境下,使用Microsoft Visual C++ (MSVC) 和 MinGW 工具链编译C或C++程序时,不同类型的文件及其相互关系。这里主要讲解的是库文件、动态链接库(DLL)、导...
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。