if cuda and RANK != -1: model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
时间: 2024-03-11 15:43:49 浏览: 81
这段代码的作用是在使用分布式训练时,将模型转换为分布式数据并行模型(DistributedDataParallel, DDP),以提高训练的效果和速度。如果使用了分布式训练且当前进程不是主进程,则会将模型转换为DDP模型,其中device_ids指定使用的GPU设备,output_device指定输出设备,这里都是使用本地GPU进行训练。最终返回的是转换后的DDP模型。
相关问题
检查以下代码:def main(opt): # Checks if RANK in {-1, 0}: print_args(vars(opt)) check_git_status() check_requirements() # DDP mode device = select_device(opt.device, batch_size=opt.batch_size) if LOCAL_RANK != -1: assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size' assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' torch.cuda.set_device(LOCAL_RANK) device = torch.device('cuda', LOCAL_RANK) dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo') # Parameters opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run # Train train(opt, device)
这段代码主要是一个 Python 脚本的入口函数,包含以下功能:
1. 检查当前的进程是否为主进程,如果是,则打印参数,并检查 Git 状态和依赖库是否满足要求;
2. 选择设备,并在分布式训练模式下初始化进程组;
3. 设置保存模型的路径;
4. 调用 `train` 函数进行训练。
需要注意的几点:
1. `RANK` 和 `LOCAL_RANK` 都是来自于 `torch.distributed` 库,用于分布式训练中进程的标识;
2. `WORLD_SIZE` 是指分布式训练中进程的总数;
3. `select_device` 函数用于选择运行设备,可以根据参数指定使用 CPU 或 GPU,同时也会自动处理 GPU 数量不足的情况;
4. `increment_path` 函数用于为保存模型的路径添加一个后缀,避免新模型覆盖旧模型;
5. `train` 函数是实际的训练过程,需要传入参数 `opt` 和设备 `device`。
概述这段代码的作用: # Update image weights (optional) if opt.image_weights: # Generate indices if rank in [-1, 0]: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if rank != -1: indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if rank != 0: dataset.indices = indices.cpu().numpy()
这段代码的作用是在训练神经网络时,根据图像的权重对图像进行采样,以提高模型对低频类别的分类准确性。具体实现方式是根据训练数据集中每个类别的权重,计算每个图像的权重,并将其用于随机采样。如果使用了分布式数据并行(DDP)训练,还会进行数据广播以确保每个进程使用相同的采样索引。这段代码中的具体实现细节可能会因为不同的神经网络结构、训练任务和数据集而略有不同。
阅读全文