data_2 = data[x_size, :] data_3 = data_2[array, :] selectData = data_3[:, [index1, index2]] 解释

时间: 2024-01-18 11:04:31 浏览: 24
这段代码是在从一个矩阵中选取特定的行和列,并组成一个新的矩阵。其中,data是原始矩阵,x_size是矩阵的行数,array是一个包含选取行的索引数组,index1和index2是选取的列的索引。首先,data_2选取了第x_size行的所有元素;接着,data_3选取了array中指定的行,并且选取了index1和index2列;最后,selectData就是选取出来的新矩阵。
相关问题

def crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical): K_o = R_o ** 2 / range_z K_i = R_i ** 2 / range_z for z in range(range_z): r_o = np.sqrt(z * K_o) data_layer = data_crop[:, :, z] d_o = np.sqrt(x_o ** 2 + y_o ** 2) d_i = np.sqrt(x_i ** 2 + y_i ** 2) if z < z_critical: r_i = 0 else: r_i = np.sqrt(z * K_i) data_crop[:, :, z] = np.where((d_o > r_o) | (d_i <= r_i), 0, data_layer) return data_crop data_crop = data[:, :, :400] range_x, range_y, range_z = data_crop.shape dx = 550 dy = 530 x, y = np.meshgrid(np.arange(range_x), np.arange(range_y)) x_o = x - range_x / 2 y_o = y - range_y / 2 x_i = x - dx y_i = y - dy z_critical = 50 R_o = 550 R_i = 200 data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical) data_crop = data_crop[:, :, 10:] 转C++ Eigen::Tensor<uint8_t, 3, Eigen::RowMajor>

以下是转换后的C++代码: ```c++ #include <Eigen/Core> #include <unsupported/Eigen/CXX11/Tensor> Eigen::Tensor<uint8_t, 3, Eigen::RowMajor> crop_pointcloud( Eigen::Tensor<uint8_t, 3, Eigen::RowMajor>& data_crop, Eigen::Tensor<float, 2>& x_o, Eigen::Tensor<float, 2>& y_o, Eigen::Tensor<float, 2>& x_i, Eigen::Tensor<float, 2>& y_i, float R_o, float R_i, int z_critical) { int range_z = data_crop.dimension(2); float K_o = R_o * R_o / range_z; float K_i = R_i * R_i / range_z; for (int z = 0; z < range_z; ++z) { float r_o = std::sqrt(z * K_o); auto data_layer = data_crop.chip(z, 2); auto d_o = (x_o * x_o + y_o * y_o).sqrt(); auto d_i = (x_i * x_i + y_i * y_i).sqrt(); float r_i = (z < z_critical) ? 0 : std::sqrt(z * K_i); data_crop.chip(z, 2) = (d_o > r_o || d_i <= r_i).select(0, data_layer); } return data_crop; } int main() { Eigen::Tensor<uint8_t, 3, Eigen::RowMajor> data(100, 100, 500); // Initialize data Eigen::Tensor<uint8_t, 3, Eigen::RowMajor> data_crop = data.slice(Eigen::array<int, 3>({0, 0, 0}), Eigen::array<int, 3>({100, 100, 400})); int range_x = data_crop.dimension(0); int range_y = data_crop.dimension(1); int range_z = data_crop.dimension(2); Eigen::Tensor<float, 2> x(range_x, range_y); Eigen::Tensor<float, 2> y(range_x, range_y); for (int i = 0; i < range_x; ++i) { for (int j = 0; j < range_y; ++j) { x(i, j) = i - range_x / 2; y(i, j) = j - range_y / 2; } } Eigen::Tensor<float, 2> x_o = x; Eigen::Tensor<float, 2> y_o = y; Eigen::Tensor<float, 2> x_i = x - 550; Eigen::Tensor<float, 2> y_i = y - 530; int z_critical = 50; float R_o = 550; float R_i = 200; data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical); data_crop = data_crop.slice(Eigen::array<int, 3>({0, 0, 10}), Eigen::array<int, 3>({100, 100, 390})); return 0; } ``` 注意,为了方便实现,我使用了Eigen库来处理多维数组。在C++中,需要手动遍历数组来初始化x和y,而在Python中,可以直接使用np.meshgrid来生成网格。此外,由于C++中没有np.where这个函数,我使用了Eigen的.select()函数来实现类似的功能。最后,注意将Python代码中的data_crop[:, :, 10:]转换为C++中的.slice()函数。

x, y = np.meshgrid(np.arange(range_x), np.arange(range_y)) # np.savetxt('reshape_data.txt', x, delimiter=' ', fmt="%i") x_o = x - range_x / 2 y_o = y - range_y / 2 x_i = x - dx y_i = y - dy z_critical = 50 R_o = 550 R_i = 200 def crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical): K_o = R_o ** 2 / range_z K_i = R_i ** 2 / range_z for z in range(range_z): r_o = np.sqrt(z * K_o) data_layer = data_crop[:, :, z] d_o = np.sqrt(x_o ** 2 + y_o ** 2) d_i = np.sqrt(x_i ** 2 + y_i ** 2) if z < z_critical: r_i = 0 else: r_i = np.sqrt(z * K_i) data_crop[:, :, z] = np.where((d_o > r_o) | (d_i <= r_i), 0, data_layer) return data_crop data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical) data_crop = data_crop[:, :, 10:] 用 C++ Eigen::Tensor实现 ,data_crop的数据类型为Eigen::Tensor<uint8_t, 3, Eigen::RowMajor>

以下是使用Eigen::Tensor库实现的代码,其中使用了Eigen::TensorMap和Eigen::array类来实现张量的切片和元素访问: ``` #include <Eigen/Core> #include <unsupported/Eigen/CXX11/Tensor> #include <cmath> using namespace Eigen; template<typename T> using Tensor3 = Tensor<T, 3, RowMajor>; template<typename T> Tensor3<T> crop_pointcloud(Tensor3<T>& data_crop, const Tensor<int, 2>& x_o, const Tensor<int, 2>& y_o, const Tensor<int, 2>& x_i, const Tensor<int, 2>& y_i, const T& R_o, const T& R_i, const int z_critical) { const int range_z = data_crop.dimension(2); const T K_o = R_o * R_o / range_z; const T K_i = R_i * R_i / range_z; for (int z = 0; z < range_z; ++z) { const T r_o = std::sqrt(z * K_o); TensorMap<Tensor2<T>> data_layer(data_crop.data() + z * data_crop.dimension(0) * data_crop.dimension(1), data_crop.dimension(0), data_crop.dimension(1)); const Tensor<T, 2> d_o = (x_o * x_o + y_o * y_o).sqrt(); const Tensor<T, 2> d_i = (x_i * x_i + y_i * y_i).sqrt(); const T r_i = (z < z_critical) ? 0 : std::sqrt(z * K_i); data_layer = (d_o > r_o).select(T(0), (d_i <= r_i).select(T(0), data_layer)); } return data_crop; } int main() { const int range_x = 100; const int range_y = 100; const int range_z = 200; Tensor<int, 2> x(range_x, range_y), y(range_x, range_y); for (int i = 0; i < range_x; ++i) { for (int j = 0; j < range_y; ++j) { x(i, j) = i; y(i, j) = j; } } const Tensor<int, 2> x_o = x.array() - range_x / 2; const Tensor<int, 2> y_o = y.array() - range_y / 2; const Tensor<int, 2> x_i = x.array() - 1; const Tensor<int, 2> y_i = y.array() - 1; const int z_critical = 50; const int R_o = 550; const int R_i = 200; Tensor3<uint8_t> data_crop(range_x, range_y, range_z); data_crop.setRandom(); data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical); data_crop = data_crop.slice(IndexList<0, 1, 2>(), IndexList<0, 0, 10>()); return 0; } ``` 这段代码中,crop_pointcloud函数的输入和输出都是三维张量,数据类型为uint8_t,其中x_o、y_o、x_i、y_i均为二维张量,R_o、R_i、z_critical均为标量。在函数中,使用了Eigen::TensorMap将三维张量data_crop的数据映射到二维张量data_layer上,然后使用select函数实现了条件判断和赋值操作。

相关推荐

import pyntcloud from scipy.spatial import cKDTree import numpy as np def pass_through(cloud, limit_min=-10, limit_max=10, filter_value_name="z"): """ 直通滤波 :param cloud:输入点云 :param limit_min: 滤波条件的最小值 :param limit_max: 滤波条件的最大值 :param filter_value_name: 滤波字段(x or y or z) :return: 位于[limit_min,limit_max]范围的点云 """ points = np.asarray(cloud.points) if filter_value_name == "x": ind = np.where((points[:, 0] >= limit_min) & (points[:, 0] <= limit_max))[0] x_cloud = pcd.select_by_index(ind) return x_cloud elif filter_value_name == "y": ind = np.where((points[:, 1] >= limit_min) & (points[:, 1] <= limit_max))[0] y_cloud = cloud.select_by_index(ind) return y_cloud elif filter_value_name == "z": ind = np.where((points[:, 2] >= limit_min) & (points[:, 2] <= limit_max))[0] z_cloud = pcd.select_by_index(ind) return z_cloud # -------------------读取点云数据并可视化------------------------ # 读取原始点云数据 cloud_before=pyntcloud.PyntCloud.from_file("./data/pcd/000000.pcd") # 进行点云下采样/滤波操作 # 假设得到了处理后的点云(下采样或滤波后) pcd = o3d.io.read_point_cloud("./data/pcd/000000.pcd") filtered_cloud = pass_through(pcd, limit_min=-10, limit_max=10, filter_value_name="x") # 获得原始点云和处理后的点云的坐标值 points_before = cloud_before.points.values points_after = filtered_cloud.points.values # 使用KD-Tree将两组点云数据匹配对应,求解最近邻距离 kdtree_before = cKDTree(points_before) distances, _ = kdtree_before.query(points_after) # 计算平均距离误差 ade = np.mean(distances) print("滤波前后的点云平均距离误差为:", ade) o3d.visualization.draw_geometries([filtered_cloud], window_name="直通滤波", width=1024, height=768, left=50, top=50, mesh_show_back_face=False) # 创建一个窗口,设置窗口大小为800x600 vis = o3d.visualization.Visualizer() vis.create_window(width=800, height=600) # 设置视角点 ctr = vis.get_view_control() ctr.set_lookat([0, 0, 0]) ctr.set_up([0, 0, 1]) ctr.set_front([1, 0, 0])这段程序有什么问题吗

def unzip_infer_data(src_path,target_path): ''' 解压预测数据集 ''' if(not os.path.isdir(target_path)): z = zipfile.ZipFile(src_path, 'r') z.extractall(path=target_path) z.close() def load_image(img_path): ''' 预测图片预处理 ''' img = Image.open(img_path) if img.mode != 'RGB': img = img.convert('RGB') img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) # HWC to CHW img = img/255 # 像素值归一化 return img infer_src_path = '/home/aistudio/data/data55032/archive_test.zip' infer_dst_path = '/home/aistudio/data/archive_test' unzip_infer_data(infer_src_path,infer_dst_path) para_state_dict = paddle.load("MyCNN") model = MyCNN() model.set_state_dict(para_state_dict) #加载模型参数 model.eval() #验证模式 #展示预测图片 infer_path='data/archive_test/alexandrite_6.jpg' img = Image.open(infer_path) plt.imshow(img) #根据数组绘制图像 plt.show() #显示图像 #对预测图片进行预处理 infer_imgs = [] infer_imgs.append(load_image(infer_path)) infer_imgs = np.array(infer_imgs) label_dic = train_parameters['label_dict'] for i in range(len(infer_imgs)): data = infer_imgs[i] dy_x_data = np.array(data).astype('float32') dy_x_data=dy_x_data[np.newaxis,:, : ,:] img = paddle.to_tensor (dy_x_data) out = model(img) lab = np.argmax(out.numpy()) #argmax():返回最大数的索引 print("第{}个样本,被预测为:{},真实标签为:{}".format(i+1,label_dic[str(lab)],infer_path.split('/')[-1].split("_")[0])) print("结束") 以上代码进行DNN预测,根据这段代码写一段续写一段利用这个模型进行宝石预测的GUI界面,其中包含预测结果是否正确的判断功能

def unzip_infer_data(src_path,target_path): ''' 解压预测数据集 ''' if(not os.path.isdir(target_path)): z = zipfile.ZipFile(src_path, 'r') z.extractall(path=target_path) z.close() def load_image(img_path): ''' 预测图片预处理 ''' img = Image.open(img_path) if img.mode != 'RGB': img = img.convert('RGB') img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) # HWC to CHW img = img/255 # 像素值归一化 return img infer_src_path = './archive_test.zip' infer_dst_path = './archive_test' unzip_infer_data(infer_src_path,infer_dst_path) para_state_dict = paddle.load("MyDNN") model = MyDNN() model.set_state_dict(para_state_dict) #加载模型参数 model.eval() #验证模式 #展示预测图片 infer_path='./archive_test/alexandrite_18.jpg' img = Image.open(infer_path) plt.imshow(img) #根据数组绘制图像 plt.show() #显示图像 #对预测图片进行预处理 infer_imgs = [] infer_imgs.append(load_image(infer_path)) infer_imgs = np.array(infer_imgs) label_dic = train_parameters['label_dict'] for i in range(len(infer_imgs)): data = infer_imgs[i] dy_x_data = np.array(data).astype('float32') dy_x_data=dy_x_data[np.newaxis,:, : ,:] img = paddle.to_tensor (dy_x_data) out = model(img) lab = np.argmax(out.numpy()) #argmax():返回最大数的索引 print("第{}个样本,被预测为:{},真实标签为:{}".format(i+1,label_dic[str(lab)],infer_path.split('/')[-1].split("_")[0])) print("结束")根据这一段代码续写一段利用这个模型进行宝石预测的GUI界面

优化SQL select round( ohbmc.after_actual_amount/zz,0) cost_moneyi ,count(distinct case when ddp.orig_plan_rid = -1 then null else ddp.orig_plan_rid end) AS orig_num ,array_agg (dlt.state) AS loading_state ,count(DISTINCT CASE WHEN ddp.sale_planid = -1 THEN NULL ELSE ddp.sale_planid END) AS saleid_num--销地已计划数量 ,array_agg(dto.state) AS saletransport_state from ( SELECT id AS origin_planid , unnest(cabinet_rule_id) cabinet_rule_id -- 判断 next_plan_id 本身是空和 next_plan_id 为 {} ,unnest(case when (next_plan_id is null or next_plan_id[1] is null) then ARRAY[-1]::integer[] else next_plan_id end) as sale_planid --销地计划 , case when dp.plan_receiver_id is null then -1 else dp.plan_receiver_id end orig_plan_rid --产地计划 FROM ods.ods_durian_delivery_plan as dp left join ods.ods_hl_commodity_category as hcc on hcc.category_id = dp.category_id WHERE dp.type = 'ORIGIN' AND dp.deleted = 99 AND dp.tenant_id = 1 and cabinet_rule_id='{8}'or cabinet_rule_id='{9}'or cabinet_rule_id='{10000005}'---取白心火龙果 AND hcc.category_name = '火龙果') as ddp LEFT JOIN ods.ods_durian_loading_task AS dlt ON dlt.plan_id = ddp.origin_planid and dlt.plan_type='ORIGIN' AND dlt.deleted = 99 LEFT JOIN ods.ods_durian_transport_order AS dto ON dto.plan_id = ddp.sale_planid AND dto.deleted = 99 LEFT JOIN ods.ods_durian_receipt_task AS drt ON drt.plan_id = ddp.sale_planid AND drt.deleted = 99 LEFT JOIN ods.ods_durian_transport_order AS dto1 ON dto1.plan_id = ddp.sale_planid AND dto1.sort_no = 1 AND dto1.deleted = 99 left join (select odlsi.plan_id,sum(odlsi.quantity) zz from ods.ods_durian_loading_sku_item odlsi group by 1) odlsi on odlsi.plan_id=dlt.plan_id left join (select *, unnest(case when ( odbr.bill_main_id is null or odbr.bill_main_id is null) then ARRAY[-1]::integer[] else odbr.bill_main_id end) bill_main_id_r from ods.ods_durian_bill_rel odbr) odbr on odbr.data_id= dlt.plan_id and odbr.data_type='ORIGIN_FEE' left join ods.ods_hl_bill_main_currency ohbmc on ohbmc.bill_main_id=odbr.bill_main_id_r and ohbmc.deleted=99 group by 1;

最新推荐

recommend-type

SecondactivityMainActivity.java

SecondactivityMainActivity.java
recommend-type

mmexport1719207093976.jpg

mmexport1719207093976.jpg
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到