基于全景投影的拼接 c++ 代码
时间: 2024-03-09 11:49:31 浏览: 192
全景投影的拼接可以使用OpenCV库来实现,在C++中可以使用以下代码:
```cpp
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main(){
// 读取图像
Mat img1 = imread("image1.jpg", IMREAD_COLOR);
Mat img2 = imread("image2.jpg", IMREAD_COLOR);
// 判断图像是否读取成功
if(img1.empty() || img2.empty()){
cout << "读取图像失败" << endl;
return -1;
}
// 特征点匹配
vector<KeyPoint> keypoints1, keypoints2;
Mat descriptors1, descriptors2;
Ptr<ORB> orb = ORB::create();
orb->detectAndCompute(img1, Mat(), keypoints1, descriptors1);
orb->detectAndCompute(img2, Mat(), keypoints2, descriptors2);
BFMatcher matcher(NORM_HAMMING, true);
vector<DMatch> matches;
matcher.match(descriptors1, descriptors2, matches);
// 筛选匹配点
double min_dist = 100, max_dist = 0;
for(int i = 0; i < descriptors1.rows; i++){
double dist = matches[i].distance;
if(dist < min_dist) min_dist = dist;
if(dist > max_dist) max_dist = dist;
}
vector<DMatch> good_matches;
for(int i = 0; i < descriptors1.rows; i++){
if(matches[i].distance <= max(2 * min_dist, 30.0)){
good_matches.push_back(matches[i]);
}
}
// 计算图像配准矩阵
vector<Point2f> img1_pts, img2_pts;
for(int i = 0; i < good_matches.size(); i++){
img1_pts.push_back(keypoints1[good_matches[i].queryIdx].pt);
img2_pts.push_back(keypoints2[good_matches[i].trainIdx].pt);
}
Mat H = findHomography(img1_pts, img2_pts, RANSAC);
// 拼接图像
Mat dst;
warpPerspective(img1, dst, H, Size(img1.cols + img2.cols, img1.rows));
Mat roi(dst, Rect(img1.cols, 0, img2.cols, img2.rows));
img2.copyTo(roi);
// 显示结果
namedWindow("拼接结果", WINDOW_NORMAL);
imshow("拼接结果", dst);
waitKey(0);
return 0;
}
```
需要注意的是,这里使用的是ORB特征点检测和匹配算法,可以根据实际情况选择其他的算法。此外,还需要根据实际情况调整匹配点的筛选条件,以获得更好的拼接效果。
阅读全文