日本数学家古角静夫研究自然数时,发现一个有趣现象:“如果是个偶数就除2,如果是奇数就乘以3加1”,经过有限个这样的处理步骤,最后一定能得到1。 编写程序,任意输入一个自然数,给出得到结果1的运算过程。
时间: 2024-11-29 11:33:44 浏览: 14
这个现象被称为“Collatz 猜想”或“3n+1 拓扑”。我们可以编写一个简单的 Python 程序来模拟这个过程:
```python
def collatz_sequence(n):
steps = []
while n != 1:
if n % 2 == 0:
n //= 2
steps.append("除以2")
else:
n = 3 * n + 1
steps.append("乘以3加1")
steps.append(f"当前值:{n}")
steps.append("到达1")
return steps
# 输入用户想要计算的自然数
number = int(input("请输入一个自然数:"))
sequence = collatz_sequence(number)
print(f"从 {number} 开始的 Collatz 序列为:")
for step in sequence:
print(step)
相关问题
日本数学家古角静夫研究自然数时,发现一个有趣现象:“如果是个偶数就除2,如果是奇数就乘以3加1”,经过有限个这样的处理步骤,最后一定能得到1. 任意输入一个自然数,给出得到结果1的运算过程。
假设输入的自然数为n,根据古角静夫的研究,如果n是偶数,则将n除以2,如果n是奇数,则将n乘以3再加1。重复这个过程,直到n等于1为止。
例如,如果输入的自然数是6,则按照上述规则进行操作,得到以下过程:
6 → 3 × 2 → 10 → 5 × 2 → 16 → 8 → 4 → 2 → 1
因此,得到结果1的运算过程为:6 → 3 × 2 → 10 → 5 × 2 → 16 → 8 → 4 → 2 → 1。
C语言编程4、验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1。如此经过有限次运算后,总可以得到自然数 1。人们把谷角静夫的这一发现叫做“谷角猜想”。z
以下是求解谷角猜想的 C 语言代码:
#include <stdio.h>
int main() {
int n;
printf("请输入一个自然数:");
scanf("%d", &n);
while (n != 1) {
if (n % 2 == 0) {
n /= 2;
} else {
n = n * 3 + 1;
}
printf("%d ", n);
}
return 0;
}
这段代码使用了 while 循环,每次判断当前的数 n 是否为 1,如果不是,则根据 n 是奇数还是偶数执行相应的运算,并打印出中间结果。直到 n 成为 1 时,程序退出循环。
阅读全文