resnet图像识别代码
时间: 2024-04-06 18:27:17 浏览: 93
基于深度学习resnet50的垃圾图像识别 完整代码+数据 毕业设计 可直接运行
5星 · 资源好评率100%
ResNet(Residual Network)是一种非常流行的深度学习模型,用于图像识别任务。下面是一个简单的ResNet图像识别代码的示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
# 加载预训练的ResNet模型
resnet = models.resnet50(pretrained=True)
# 替换最后一层全连接层
num_classes = 10 # 假设有10个类别
resnet.fc = nn.Linear(resnet.fc.in_features, num_classes)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(resnet.parameters(), lr=0.001, momentum=0.9)
# 加载数据集并进行训练
train_loader = ...
test_loader = ...
num_epochs = 10
for epoch in range(num_epochs):
for images, labels in train_loader:
optimizer.zero_grad()
outputs = resnet(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 在测试集上进行验证
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
outputs = resnet(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f'Epoch {epoch+1}/{num_epochs}, Test Accuracy: {accuracy:.2f}%')
```
这段代码使用PyTorch框架实现了一个基于ResNet的图像识别模型。首先,我们加载预训练的ResNet模型,并替换最后一层全连接层以适应特定的类别数量。然后,定义损失函数和优化器。接下来,通过加载训练集和测试集的数据进行训练和验证。在每个训练周期中,我们计算损失并进行反向传播优化模型参数。最后,在测试集上计算准确率并输出结果。
阅读全文