基于ResNet的衣物识别代码
时间: 2024-12-22 20:26:00 浏览: 3
基于ResNet的衣物识别通常是深度学习领域的一个应用,使用了著名的Residual Network (ResNet)架构来进行图像分类任务。ResNet特别之处在于引入了残差块(residual blocks),解决了深度神经网络训练过程中的梯度消失问题。
以下是一个简化的基于Python和PyTorch实现的ResNet衣物识别代码概述:
```python
import torch
from torchvision import models, transforms
# 导入预训练的ResNet模型,比如ResNet50
model = models.resnet50(pretrained=True)
# 冻结所有层,防止在迁移学习中更新预训练权重
for param in model.parameters():
param.requires_grad = False
# 添加全连接层(根据需要调整类别数)
num_classes = len(your_labels) # 假设your_labels是衣物类别的列表
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)
# 定义数据预处理步骤
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 准备数据加载器
train_loader = ... # 加载训练图片及其标签
test_loader = ... # 加载测试图片及其标签
# 训练部分
optimizer = torch.optim.Adam(model.fc.parameters(), lr=0.001)
criterion = torch.nn.CrossEntropyLoss()
# 循环训练
for epoch in range(num_epochs):
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 测试部分
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
```
阅读全文