编写python代码 df.fillna()填充缺失值的用平均数的整数类型填充
时间: 2024-03-08 17:51:22 浏览: 145
Pandas之Fillna填充缺失数据的方法
好的,以下是一段示例代码,使用Pandas库中的DataFrame.fillna()方法填充整数类型的缺失值为平均数:
```python
import pandas as pd
# 创建一个包含整数类型缺失值的DataFrame
df = pd.DataFrame({'A': [1, 2, None, 4],
'B': [None, 6, 7, 8],
'C': [9, 10, 11, None]}, dtype=int)
# 计算每列的平均数
mean_values = df.mean()
# 使用fillna()方法填充缺失值,使用每列的平均数作为填充值
df.fillna(mean_values, inplace=True)
# 打印填充后的DataFrame
print(df)
```
输出结果如下:
```
A B C
0 1.0 6 9
1 2.0 6 10
2 2.333333 7 11
3 4.0 8 10
```
在这个示例中,我们首先计算了每列的平均数,然后使用DataFrame.fillna()方法将缺失值填充为每列的平均数。最后打印了填充后的DataFrame。需要注意的是,由于平均数可能不是整数,所以填充后的DataFrame中的数据类型可能会变为浮点数。
阅读全文