BCI competition 2a怎么转换成DGLBuiltinDataset格式,python代码
时间: 2024-02-22 08:59:01 浏览: 124
CNN 通过脑电波读数预测身体运动_python_Jupyter_代码_下载
5星 · 资源好评率100%
将BCI competition 2a数据集转换为DGLBuiltinDataset格式的Python代码如下:
```python
import numpy as np
import os
from dgl.data.utils import save_graphs
def load_data():
# load data from BCI competition 2a
data_path = 'BCI_Competition_IIa.mat'
data = scipy.io.loadmat(data_path)
# extract features and labels
X = data['data']
y = data['labels'][0]
# convert labels to binary classification
y[y == -1] = 0
# build graph for each trial
graphs = []
for i in range(X.shape[2]):
# create graph
g = dgl.DGLGraph()
# add nodes
g.add_nodes(X.shape[1])
# add edges
src, dst = np.meshgrid(np.arange(X.shape[1]), np.arange(X.shape[1]))
src = src.reshape(-1)
dst = dst.reshape(-1)
g.add_edges(src, dst)
# add features and labels
g.ndata['feat'] = torch.tensor(X[:, :, i].T, dtype=torch.float32)
g.ndata['label'] = torch.tensor(y[i], dtype=torch.long)
# add graph to list
graphs.append(g)
return graphs
if __name__ == '__main__':
graphs = load_data()
save_graphs('BCI_Competition_IIa.bin', graphs)
```
这个代码将 `BCI_Competition_IIa.mat` 文件中的数据加载到内存中,并将其转换为一个包含多个DGL图的列表。每个DGL图对应于一个试验,其中每个节点都包含一个特征向量和一个标签。最后,它将DGL图列表保存到二进制文件 `BCI_Competition_IIa.bin` 中。
阅读全文